Research on Biomedical Engineering
https://rbejournal.org/article/doi/10.1590/2446-4740.0734
Research on Biomedical Engineering
Original Article

Lamina specific loss of inhibition may lead to distinct neuropathic manifestations: a computational modeling approach

Prada, Erick Javier A.; Bustillos, Ricardo José S.; Huerta, Mónica Karel; Martínez, Antonio D’Alessandro

Downloads: 0
Views: 411

Abstract

Introduction: It has been reported that inhibitory control at the superficial dorsal horn (SDH) can act in a regionally distinct manner, which suggests that regionally specific subpopulations of SDH inhibitory neurons may prevent one specific neuropathic condition. Methods: In an attempt to address this issue, we provide an alternative approach by integrating neuroanatomical information provided by different studies to construct a network-model of the SDH. We use Neuroids to simulate each neuron included in that model by adapting available experimental evidence. Results: Simulations suggest that the maintenance of the proper level of pain sensitivity may be attributed to lamina II inhibitory neurons and, therefore, hyperalgesia may be elicited by suppression of the inhibitory tone at that lamina. In contrast, lamina III inhibitory neurons are more likely to be responsible for keeping the nociceptive pathway from the mechanoreceptive pathway, so loss of inhibitory control in that region may result in allodynia. The SDH network-model is also able to replicate non-linearities associated to pain processing, such as Aβ-fiber mediated analgesia and frequency-dependent increase of the neural response. Discussion: By incorporating biophysical accuracy and newer experimental evidence, the SDH network-model may become a valuable tool for assessing the contribution of specific SDH connectivity patterns to noxious transmission in both physiological and pathological conditions.

Keywords

Computational pain modeling, Inhibitory control, Superficial dorsal horn circuit, Network model.

References

Agi E, Ozgen C, Purali N. Modeling of gate control neuronal circuitry including morphologies and physiologies of component neurons and fibres. In: Kothare MV, Tade MO, Vande Wouwer A, Smets I, editors. Proceedings of the 9th International Symposium on Dynamics and Control of Process Systems; 2010 Jul 5-7; Leuven, Belgium. Leuven: International Federation of Automatic Control; 2010. p. 857-62

Andrew D, Craig AD. Responses of spinothalamic lamina I neurons to maintained noxious mechanical stimulation in the cat. Journal of Neurophysiology. 2002; 87(4):1889-901. PMid:11929909

Baba H, Doubell TP, Woolf CJ. Peripheral inflammation facilitates Abeta fiber-mediated synaptic input to the substantia gelatinosa of the adult rat spinal cord. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 1999; 19(2):859-67. PMid:9880605

Baba H, Ji RR, Kohno T, Moore KA, Ataka T, Wakai A, Okamoto M, Woolf CJ. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Molecular and Cellular Neurosciences. 2003; 24(3):818-30. http://dx.doi.org/10.1016/S1044-7431(03)00236-7. PMid:14664828

Bayly EJ. Spectral analysis of pulse frequency modulation in the nervous systems. IEEE Transactions on Biomedical Engineering. 1968; 15(4):257-65. http://dx.doi.org/10.1109/TBME.1968.4502576. PMid:5699902

Britton NF, Chaplain MAJ, Skevington SM. The role of N-methyl-D-aspartate (NMDA) receptors in wind-up: a mathematical model. IMA Journal of Mathematics Applied in Medicine and Biology. 1996; 13(3):193-205. http://dx.doi.org/10.1093/imammb/13.3.193. PMid:8921589

Cain DM, Khasabov SG, Simone DA. Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study. Journal of Neurophysiology. 2001; 85(4):1561-74. PMid:11287480

Callaway EM, Katz LC. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proceedings of the National Academy of Sciences of the United States of America. 1993; 90(16):7661-5. http://dx.doi.org/10.1073/pnas.90.16.7661. PMid:7689225

Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annual Review of Neuroscience. 2009; 32(1):1-32. http://dx.doi.org/10.1146/annurev.neuro.051508.135531. PMid:19400724

Craig AD, Krout K, Andrew D. Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. Journal of Neurophysiology. 2001; 86(3):1459-80. PMid:11535691

Cronin JN, Bradbury EJ, Lidierth M. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity. Pain. 2004; 112(1-2):156-63. http://dx.doi.org/10.1016/j.pain.2004.08.010. PMid:15494196

Daniele CA, MacDermott AB. Low-threshold primary afferent drive onto GABAergic interneurons in the superficial dorsal horn of the mouse. The Journal of Neuroscience. 2009; 29(3):686-95. http://dx.doi.org/10.1523/JNEUROSCI.5120-08.2009. PMid:19158295

Farajidavar A, Saeb S, Behbehani K. Incorporating synaptic time-dependent plasticity and dynamic synapse into a computational model of wind-up. Neural Networks: The Official Journal of the International Neural Network Society. 2008; 21(2-3):241-9. http://dx.doi.org/10.1016/j.neunet.2007.12.021. PMid:18242953

Farajidavar A, Towhidkhah F, Mirhashemi A, Gharibzadeh S, Behbehani K. Computational modeling of Aβ fiber wind-up. In: Proceedings of the 28th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC); 2006 Aug 30-Sept 3; New York, USA. New York: IEEE; 2013. p. 4975-8

Graham BA, Brichta AM, Callister RJ. In vivo responses of mouse superficial dorsal horn neurones to both current injection and peripheral cutaneous stimulation. The Journal of Physiology. 2004; 561(3):749-63. http://dx.doi.org/10.1113/jphysiol.2004.072645. PMid:15604230

Graham BA, Brichta AM, Callister RJ. Moving from an averaged to specific view of spinal cord pain processing circuits. Journal of Neurophysiology. 2007; 98(3):1057-63. http://dx.doi.org/10.1152/jn.00581.2007. PMid:17567772

Haeri M, Asemani D, Gharibzadeh S. Modeling of pain using artificial neural networks. Journal of Theoretical Biology. 2003; 220(3):277-84. http://dx.doi.org/10.1006/jtbi.2003.3130. PMid:12468280

Herrero JF, Laird JM, López-García JA. Wind-up of spinal cord neurones and pain sensation: much ado about something? Progress in Neurobiology. 2000; 61(2):169-203. http://dx.doi.org/10.1016/S0301-0082(99)00051-9. PMid:10704997

Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America. 1982; 79(8):2554-8. http://dx.doi.org/10.1073/pnas.79.8.2554. PMid:6953413

Hopfield JJ. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences of the United States of America. 1984; 81(10):3088-92. http://dx.doi.org/10.1073/pnas.81.10.3088. PMid:6587342

Horch KW, Dhillon GS. Neuroprosthetics: theory and practice. New York: World Scientific; 2004

Inquimbert P, Rodeau JL, Schlichter R. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord. The European Journal of Neuroscience. 2007; 26(10):2940-9. http://dx.doi.org/10.1111/j.1460-9568.2007.05919.x. PMid:18001289

Kato G, Kawasaki Y, Koga K, Uta D, Kosugi M, Yasaka T, Yoshimura M, Ji RR, Strassman AM. Organization of intralaminar and translaminar neuronal connectivity in the superficial spinal dorsal horn. The Journal of Neuroscience. 2009; 29(16):5088-99. http://dx.doi.org/10.1523/JNEUROSCI.6175-08.2009. PMid:19386904

Keller AF, Beggs S, Salter MW, De Koninck Y. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Molecular Pain. 2007; 3(1):27. http://dx.doi.org/10.1186/1744-8069-3-27. PMid:17900333

Kosugi M, Kato G, Lukashov S, Pendse G, Puskar Z, Kozsurek M, Strassman AM. Subpopulation-specific patterns of intrinsic connectivity in mouse superficial dorsal horn as revealed by laser scanning photostimulation. The Journal of Physiology. 2013; 591(7):1935-49. http://dx.doi.org/10.1113/jphysiol.2012.244210. PMid:23297304

Lavertu G, Côté SL, De Koninck Y. Enhancing K-Cl co-transport restores normal spinothalamic sensory coding in a neuropathic pain model. Brain. 2014; 137(3):724-38. http://dx.doi.org/10.1093/brain/awt334. PMid:24369380

Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun YY, Ji RR, Xiong L. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. The Journal of Clinical Investigation. 2013; 123(9):4050-62. http://dx.doi.org/10.1172/JCI70026. PMid:23979158

Lu Y, Perl ER. A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2003; 23(25):8752-8. PMid:14507975

Lu Y, Perl ER. Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). The Journal of Neuroscience 2005; 25(15):3900-7. http://dx.doi.org/10.1523/JNEUROSCI.0102-05.2005. PMid:15829642

Ma Q. Population coding of somatic sensations. Neuroscience Bulletin. 2012; 28(2):91-9. http://dx.doi.org/10.1007/s12264-012-1201-2. PMid:22466120

Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. Journal of Neurotrauma. 2010; 27(4):729-37. http://dx.doi.org/10.1089/neu.2009.1166. PMid:20059302

Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965; 150(3699):971-9. http://dx.doi.org/10.1126/science.150.3699.971. PMid:5320816

Mendell LM. Computational functions of neurons and circuits signaling injury: relationship to pain behavior. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(Suppl 3):15596-601. http://dx.doi.org/10.1073/pnas.1012195108. PMid:21368123

Millán MJ. The induction of pain: an integrative review. Progress in Neurobiology. 1999; 57(1):1-164. http://dx.doi.org/10.1016/S0301-0082(98)00048-3. PMid:9987804

Miraucourt LS, Dallel R, Voisin DL. Glycine inhibitory dysfunction turns touch into pain through PKCgamma interneurons. PLoS One. 2007; 2(11):e1116. http://dx.doi.org/10.1371/journal.pone.0001116. PMid:17987109

Polgár E, Durrieux C, Hughes DI, Todd AJ. A quantitative study of inhibitory interneurons in laminae I-III of the mouse spinal dorsal horn. PLoS One. 2013; 8(10):e78309. http://dx.doi.org/10.1371/journal.pone.0078309. PMid:24205193

Prada EJA, Bustillos RJS, Castillo C, Huerta M. New trends in computational modeling: a neuroid-based retina model. In: Proceedings of the 35th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC); 2013 Jul 3-7; Osaka, Japan. Osaka: IEEE; 2013. p. 4561-4

Prada EJA, Bustillos RJS, Castillo C, Huerta M. The neuroid: a novel and simplified neuron-model. In: Proceedings of the 34th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC); 2012 Aug 28-Sep 1; San Diego, CA. San Diego: IEEE; 2012. p. 1234-7

Prada EJA, Bustillos RJS. The implementation of the neuroid in the gate control system leads to new ideas about pain processing. Revista Brasileira de Engenharia Biomédica. 2013; 29(3):254-61

Prescott SA, Ma Q, De Koninck Y. Normal and abnormal coding of somatosensory stimuli causing pain. Nature Neuroscience. 2014; 17(2):183-91. http://dx.doi.org/10.1038/nn.3629. PMid:24473266

Prescott SA, Ratté S. Pain processing by spinal microcircuits: afferent combinatorics. Current Opinion in Neurobiology. 2012; 22(4):631-9. http://dx.doi.org/10.1016/j.conb.2012.02.010. PMid:22409855

Prince KM, Campbell J, Picton P, Turner S. A computational model of acute pain. In: Horton G. Proceedings of the 18th European Simulation Multiconference; 2004 Jun 13-16; Magdeburg, Germany. Magdeburg: SCS Europe; 2004

Rieke F, Warland D, van Steveninck RR, Bialek W. Spikes: exploring the neural code. Cambridge: MIT Press; 1997

Ruscheweyh R, Sandkühler J. Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. The Journal of Physiology. 2002; 541(1):231-44. http://dx.doi.org/10.1113/jphysiol.2002.017756. PMid:12015432

Sandkühler J. Models and mechanisms of hyperalgesia and allodynia. Physiological Reviews. 2009; 89(2):707-58. http://dx.doi.org/10.1152/physrev.00025.2008. PMid:19342617

Schoffnegger D, Ruscheweyh R, Sandkühler J. Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats. Pain. 2008; 135(3):300-10. http://dx.doi.org/10.1016/j.pain.2007.12.016. PMid:18262362

Schouenborg J. Functional and topographical properties of field potentials evoked in rat dorsal horn by cutaneous C-fibre stimulation. The Journal of Physiology. 1984; 356(1):169-92. http://dx.doi.org/10.1113/jphysiol.1984.sp015459. PMid:6520786

Slugg RM, Campbell JN, Meyer RA. The population response of A- and C-fiber nociceptors in monkey encodes high-intensity mechanical stimuli. The Journal of Neuroscience. 2004; 24(19):4649-56. http://dx.doi.org/10.1523/JNEUROSCI.0701-04.2004. PMid:15140936

Slugg RM, Meyer RA, Campbell JN. Response of cutaneous A- and C-fiber nociceptors in the monkey to controlled-force stimuli. Journal of Neurophysiology. 2000; 83(4):2179-91. PMid:10758127

Takazawa T, MacDermott AB. Glycinergic and GABAergic tonic inhibition fine tune inhibitory control in regionally distinct subpopulations of dorsal horn neurons. The Journal of Physiology. 2010a; 588(14):2571-87. http://dx.doi.org/10.1113/jphysiol.2010.188292. PMid:20498232

Takazawa T, MacDermott AB. Synaptic pathways and inhibitory gates in the spinal cord dorsal horn. Annals of the New York Academy of Sciences. 2010b; 1198(1):153-8. http://dx.doi.org/10.1111/j.1749-6632.2010.05501.x. PMid:20536929

Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. The Journal of Comparative Neurology. 2003; 467(1):60-79. http://dx.doi.org/10.1002/cne.10905. PMid:14574680

Todd AJ, Sullivan AC. Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. The Journal of Comparative Neurology. 1990; 296(3):496-505. http://dx.doi.org/10.1002/cne.902960312. PMid:2358549

Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nature Reviews. Neuroscience. 2010; 11(12):823-36. http://dx.doi.org/10.1038/nrn2947. PMid:21068766

Xu F, Lu TJ, Seffen KA. Skin thermal pain modeling – a holistic method. Journal of Thermal Biology. 2008; 33(4):223-37. http://dx.doi.org/10.1016/j.jtherbio.2008.01.004

Yasaka T, Tiong SY, Hughes DI, Riddell JS, Todd AJ. Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain. 2010; 151(2):475-88. http://dx.doi.org/10.1016/j.pain.2010.08.008. PMid:20817353

Yasaka T, Tiong SY, Polgár E, Watanabe M, Kumamoto E, Riddell JS, Todd AJ. A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn. Molecular Pain. 2014; 10(1):3. http://dx.doi.org/10.1186/1744-8069-10-3. PMid:24433581

Zeilhofer HU, Wildner H, Yévenes GE. Fast synaptic inhibition in spinal sensory processing and pain control. Physiological Reviews. 2012; 92(1):193-235. http://dx.doi.org/10.1152/physrev.00043.2010. PMid:22298656

Zheng J, Lu Y, Perl ER. Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. The Journal of Physiology. 2010; 588(12):2065-75. http://dx.doi.org/10.1113/jphysiol.2010.188052. PMid:20403977
5889fbf25d01231a018b487b rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections