Research on Biomedical Engineering
Research on Biomedical Engineering
Original Article

Detecting alterations of glucose and lipid components in human serum by near-infrared Raman spectroscopy

Borges, Rita de Cássia Fernandes; Navarro, Ricardo Scarparo; Giana, Hector Enrique; Tavares, Fernanda Grubisich; Fernandes, Adriana Barrinha; Silveira Junior, Landulfo

Downloads: 0
Views: 485


Introduction: Raman spectroscopy may become a tool for the analysis of glucose and triglycerides in human serum in real time. This study aimed to detect spectral differences in lipid and glucose components of human serum, thus evaluating the feasibility of Raman spectroscopy for diagnostic purposes. Methods: A total of 44 samples of blood serum were collected from volunteers and submitted for clinical blood biochemical analysis. The concentrations of glucose, cholesterol, triglycerides, and low-density and high-density lipoproteins (LDL and HDL) were obtained using standard biochemical assays. Serum samples were placed in Eppendorf tubes (200 µL), kept cooled (5 °C) and analyzed with near-infrared Raman spectroscopy (830 nm, 250 mW, 50 s accumulation). The mean spectra of serum with normal or altered concentrations of each parameter were compared to determine which Raman bands were related to the differences between these two groups. Results: Differences in peak intensities of altered sera compared to normal ones depended on the parameter under analysis: for glucose, peaks were related to glucose; for lipid compounds the main changes occurred in the peaks related to cholesterol, lipids (mainly triolein) and proteins. Principal Components Analysis discriminated altered glucose, cholesterol and triglycerides from the normal serum based on the differences in the concentration of these compounds. Conclusion: Differences in the peak intensities of selected Raman bands could be seen in normal and altered blood serum samples, and may be employed as a means of diagnosis in clinical analysis.


Raman spectroscopy, Human serum, Glucose, Lipids, Cholesterol, Triglycerides.


Aleixo GAS, Coelho MCOC, Guimarães ALN, Andrade MB, Silva JAA. Comparative evaluation between the portable glucometer and Trinders’s enzymatic-colorimetric method to dose the glycemic values in dogs. Revista Portuguesa de Ciências Veterinárias. 2007; 102:(563-4): 351-54

Bachorik PS, Denke MA, Stein EA, Rifkind BM. Lipids and dyslipoproteinemia. In: Henry JB, editor. Clinical diagnosis and management by laboratory methods. 20th ed. Philadelphia: W. B. Saunders; 2001. p. 224-48

Barman I, Dingari NC, Kang JW, Horowitz GL, Dasari RR, Feld MS. Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin. Analytical Chemistry. 2012; 84(5):2474-82. PMid:22324826

Berger AJ, Itzkan I, Feld MS. Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. 1997; 53A(2):287-92. PMid:9097902

Berger AJ, Koo T-W, Itzkan I, Horowitz G, Feld MS. Multicomponent blood analysis by near-infrared Raman spectroscopy. Applied Optics. 1999; 38(13):2916-26. PMid:18319874

Bispo JAM, Sousa Vieira EE, Silveira L Jr, Fernandes AB. Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis. Journal of Biomedical Optics. 2013; 18(8):87004. PMid:23929457

Bodanese B, Silveira L Jr, Albertini R, Zângaro RA, Pacheco MTT. Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models. Photomedicine and Laser Surgery. 2010; 28(Suppl 1):S119-27. PMid:20649423

Bodanese B, Silveira FL, Zângaro RA, Pacheco MTT, Pasqualucci CA, Silveira L Jr. Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through Raman spectroscopy and principal component analysis. Photomedicine and Laser Surgery. 2012; 30(7):381-7. PMid:22693951

Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Diabetes Mellitus - cadernos de atenção básica. Brasília: Ministério da Saúde; 2006. (Cadernos de Atenção Básica, 16)

Buschman HP, Deinum G, Motz JT, Fitzmaurice M, Kramer JR, van der Laarse A, Bruschke AV, Feld MS. Raman microspectroscopy of human coronary atherosclerosis: biochemical assessment of cellular and extracellular morphologic structures in situ. Cardiovascular Pathology: The Official Journal of the Society for Cardiovascular Pathology. 2001; 10(2):69-82. PMid:11425600

Carey PR. Biological and biochemical applications of Raman and resonance Raman spectroscopies. New York: Academic Press; 1982

Ciaccio EJ, Dunn SM, Akay M. Biosignal pattern-recognition and interpretation systems. Part 3 of 4. Methods of classification. IEEE Engineering in Medicine and Biology. 1994; 13(1):129-35.

Cordova CMM, Valle JP, Yamanaka CN, Cordova MM. Determination of capillary blood glucose and venous blood glucose with a glucometer versus laboratory determination of venous plasma glucose. Jornal Brasileiro de Patologia e Medicina Laboratorial. 2009; 45(5):379-84

Dingari NC, Barman I, Singh GP, Kang JW, Dasari RR, Feld MS. Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements. Analytical and Bioanalytical Chemistry. 2011; 400(9):2871-80. PMid:21509482

Dingari NC, Horowitz GL, Kang JW, Dasari RR, Barman I. Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation. PLoS One. 2012; 7(2):e32406. PMid:22393405

Dou X, Yamaguchi Y, Yamamoto H, Doi S, Ozaki Y. Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer. Vibrational Spectroscopy. 1996; 13(1):83-9.

Fukuyama N, Homma K, Wakana N, Kudo K, Suyama A, Ohazama H, Tsuji C, Ishiwata K, Eguchi Y, Nakazawa H, Tanaka E. Validation of the Friedewald equation for evaluation of plasma LDL-Cholesterol. Journal of Clinical Biochemistry and Nutrition. 2008; 43(1):1-5. PMid:18648653

Gremlich HU, Yan B. Infrared and Raman spectroscopy of biological materials. New York: Marcel Dekker; 2001

Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F, American Heart Association, National Heart, Lung, Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005; 112(17):2735-52. PMid:16157765

Guimarães AE, Pacheco MTT, Silveira L Jr, Basottini D, Duarte J, Villaverde AB, Zângaro RA. Near Infrared Raman Spectroscopy (NIRS): A technique for doping control. Spectroscopy International Journal. 2006; 20(4):185-94.

Hanlon EB, Manoharan R, Koo T-W, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS. Prospects for in vivo Raman spectroscopy. Physics in Medicine and Biology. 2000; 45(2):R1-59. PMid:10701500

Hinkle JL, Cheever KH. Brunner & Suddarth’s textbook of medical surgical nursing. 13th ed. Philadelphia: Lippincott Willians & Wilkins, 2013

Klein R, Klein BEK, Lee KE, Cruickshanks KJ, Moss SE. The incidence of hypertension in insulin-dependent diabetes. Archives of Internal Medicine. 1996; 156(6):622-7. PMid:8629873

Knudson PE, Weinstock RS, Henry JB. Carbohydrates. In: Henry JB, editor. Clinical diagnosis and management by laboratory methods. 20th ed. Philadelphia: W. B. Saunders; 2001

Komachi Y, Sato H, Tashiro H. Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease. Applied Optics. 2006; 45(30):7938-43. PMid:17068531

Krafft C, Neudert L, Simat T, Salzer R. Near infrared Raman spectra of human brain lipids. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2005; 61(7):1529-35. PMid:15820887

Lago RM, Singh PP, Nesto RW. Diabetes and hypertension. Nature Clinical Practice. Endocrinology & Metabolism. 2007; 3(10):667. PMid:17893686

McMurdy JW 3rd, Berger AJ. Raman spectroscopy-based creatinine measurement in urine samples from a multipatient population. Applied Spectroscopy. 2003; 57(5):522-5. PMid:14658677

Movasaghi Z, Rehman S, Rehman I. Raman spectroscopy of biological tissues. Applied Spectroscopy Reviews 2007; 42(5):493-541.

National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood Cholesterol in adults (Adult Treatment Panel III) final report. Circulation 2002; 106(25):3143-421. PMid:12485966

Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS. The human serum metabolome. PLoS One. 2011; 6(2):e16957. PMid:21359215

Qi D, Berger AJ. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Applied Optics. 2007; 46(10):1726-34. PMid:17356615

Rohleder D, Kocherscheidt G, Gerber K, Kiefer W, Köhler W, Möcks J, Petrich W. Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. Journal of Biomedical Optics. 2005; 10(3):031108. PMid:16229633

Römer TJ, Brennan JF 3rd, Schut TC, Wolthuis R, van den Hoogen RCM, Emeis JJ, van der Laarse A, Bruschke AVG, Puppels GJ. Raman spectroscopy for quantifying cholesterol in intact coronary artery wall. Atherosclerosis. 1998; 141(1):117-24. PMid:9863544

Rossi EE, Pinheiro ALB, Baltatu OC, Pacheco MTT, Silveira L Jr. Differential diagnosis between experimental endophthalmitis and uveitis in vitreous with Raman spectroscopy and principal components analysis. Journal of Photochemistry and Photobiology. B, Biology. 2012; 107:73-8. PMid:22209031

Saade J, Pacheco MTT, Rodrigues MR, Silveira L Jr. Identification of hepatitis C in human blood serum by near-infrared Raman spectroscopy. Spectroscopy International Journal. 2008; 22(5):387-95.

Saade J, Silva JN, Farias PMA, Lopes DF, Santos CT, Farias BA, Rodrigues KC, Martin AA. Glicemical analysis of human blood serum using FT-Raman: a new approach. Photomedicine and Laser Surgery. 2012; 30(7):388-92. PMid:22694727

Shao J, Lin M, Li Y, Li X, Liu J, Liang J, Yao H. In vivo blood glucose quantification using Raman spectroscopy. PLoS One. 2012; 7(10):e48127. PMid:23133555

Silveira L Jr, Sathaiah S, Zângaro RA, Pacheco MTT, Chavantes MC, Pasqualucci CAG. Correlation between near-infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries. Lasers in Surgery and Medicine. 2002; 30(4):290-7. PMid:11948599

Silveira L Jr, Silveira FL, Bodanese B, Zângaro RA, Pacheco MTT. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals. Journal of Biomedical Optics. 2012; 17(7):077003. PMid:22894516

Silveira FL, Pacheco MTT, Bodanese B, Pasqualucci CA, Zângaro RA, Silveira L Jr. Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics. Lasers in Surgery and Medicine. 2015; 47(1):6-16. PMid:25583686

Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Lloyd-Jones DM, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. 2013; 63(25 Pt B):2889-934. PMid:24239923

Twardowski J, Anzenbacher P. Raman and IR spectroscopy in biology and biochemistry. New York: Ellis Horwood; 1994

Van de Poll SWE, Römer TJ, Volger OL, Delsing DJM, Bakker Schut TC, Princen HMG, Havekes LM, Jukema JW, van Der Laarse A, Puppels GJ. Raman spectroscopic evaluation of the effects of diet and lipid-lowering therapy on atherosclerotic plaque development in mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2001; 21(10):1630-5. PMid:11597937

Wannamethee SG, Shaper AG, Lennon L, Morris RW. Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Archives of Internal Medicine. 2005; 165(22):2644-50. PMid:16344423

Weatherby D, Ferguson S. Blood chemistry and CBC analysis. Bloomfield: Weatherby & Associates; 2004
5889fbf25d01231a018b487d rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections