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Abstract Introduction: The use of tools for computer-aided diagnosis (CAD) has been proposed for detection and 
classification of breast cancer. Concerning breast cancer image diagnosing with ultrasound, some results found 
in literature show that morphological features perform better than texture features for lesions differentiation, 
and indicate that a reduced set of features performs better than a larger one. Methods: This study evaluated 
the performance of support vector machines (SVM) with different kernels combinations, and neural networks 
with different stop criteria, for classifying breast cancer nodules. Twenty-two morphological features from 
the contour of 100 BUS images were used as input for classifiers and then a scalar feature selection technique 
with correlation was used to reduce the features dataset. Results: The best results obtained for accuracy and 
area under ROC curve were 96.98% and 0.980, respectively, both with neural networks using the whole set 
of features. Conclusion: The performance obtained with neural networks with the selected stop criterion 
was better than the ones obtained with SVM. Whilst using neural networks the results were better with all 
22 features, SVM classifiers performed better with a reduced set of 6 features. 
Keywords: Breast tumors, Breast ultrasound images, Neural network, Support vector machine.

Introduction
Breast cancer remains the leading cause of death 

among women in developed and developing countries. 
It is the most common cancer in women worldwide 
representing about 12% of all new cases and 25% of 
all cancers in women (World…, 2014). In Brazil, it 
ranks first in incidence in the Northeast, South and 
Southwest, in proportion 22.84%, 24.14% and 23.83% 
respectively. In North and Midwest, this incidence is 
second only to cervical cancer (Sociedade…, 2015).

In the world population, survival rate five years 
after diagnosis is 61%, however in Brazil breast 
cancer mortality rate remains high, mainly because 
in most cases the disease is diagnosed in advanced 
stages (Instituto…, 2015).

Early detection is the main strategy for breast 
cancer prevention and control. However, early 
detection requires an accurate and reliable diagnosis. 
A good detection approach should produce both low 
false positive (FP) rate and false negative (FN) rate 
(Cheng et al., 2010).

Due to its high resolution that enables nodule 
detection, a mammographic exam is one of the most 
important tools used for breast cancer screening. 
Typically, breast cancer appears in mammographic 

images as microcalcification clusters with irregular 
shapes. Microcalcifications are small calcium deposits 
inside breast tissue that sometimes are associated 
with active processes of tumor cells (Kramer and 
Aghdasi, 1999).

Mammography remains the procedure of choice 
in screening asymptomatic women for breast cancer, 
and has a major impact on the effectiveness of therapy. 
However, a large number of doubtful solid masses 
are usually forwarded to surgical biopsy, an invasive 
and painful procedure, although only 10-30% of them 
are malignant. This restriction increases the cost and 
stress imposed on the patient (Dennis et al., 2001).

With the aim to increase specificity of breast 
cancer image diagnostics, breast ultrasound (BUS) 
emerged as an important complement to mammography. 
Ultrasound is more sensitive for detecting invasive 
cancer in dense breasts (Skaane, 1999). However, it is 
an operator-dependent modality, and the interpretation 
of its images requires expertise from the radiologist.

To minimize operator dependency and improve 
the diagnostic accuracy, computer-aided diagnosis 
(CAD) systems has been proposed to detect and 
classify breast cancer nodules (Uniyal et al., 2013). 
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CAD systems provide important information based 
on computer analysis of the BUS images assisting 
health professionals to locate lesions and classify them 
as benign or malignant.

Regarding lesions in BUS images, literature shows 
that features related to morphology and texture are 
used for differentiating between malignant and benign 
lesions. Flores et al. (2015), in a literature review, listed 
26 morphological features and 1465 texture features 
used for this task.

Some results found in the literature show a better 
performance of morphological features in breast cancer 
lesion differentiating. Alvarenga et al. (2007) obtained 
a poorer performance with texture features than with 
a morphological feature set (Alvarenga et al., 2010), 
using a Fisher linear discriminant ratio classifier. 
With a combined set of features, the same authors 
did not surpass the previous results obtained with the 
morphological feature set.

With the purpose of finding the smallest set 
of morphological features producing an effective 
improvement in classification performance, Flores et al. 
(2015) evaluated a set of morphological and textural 
features proposed in the literature. As a result, the 

authors suggest using only five morphological features 
to classify breast lesions.

The most commonly used pattern recognition classifiers 
employed for breast cancer detection in BUS images 
are: neural networks (Alvarenga et al., 2005; Chen et al., 
1999; 2003), stepwise logical regression (Chiang et al., 
2001), support vector machines (Huang et al., 2008; 
Renjie et al., 2011; Wu and Moon, 2008), Fisher linear 
discriminant ratio (Alvarenga et al., 2012; Flores et al., 
2015), and decisions trees (Kuo et al., 2001).

In this paper, we aim to investigate the results of new 
methods for improving neural network generalization 
and the results of SVM classifiers with different kernels 
over the classification performance of breast cancer 
lesions in ultrasound images. Using the set of features 
compiled by Flores et al. (2015), we also tested the effect 
of dimensionality reduction of the input data on both 
neural network and SVM performance, using scalar 
feature ranking with a correlation technique. For training 
and testing the classifiers, the 4-fold-cross-validation 
method was used (Leisch et al., 1998).

Table 1 shows characteristics of three published 
studies using a neural network and three published 
studies using SVM for breast cancer classification. 

Table 1. A brief review of breast cancer classification using neural network and SVM.

Paper Classification Data set Characteristics Results

Chen et al. (1999)

Feedforward 
Neural Network, 
backpropagation 
algorithm, 25-10-1, 10 
cross-validation, stop 
criteria: mean square 
error.

144 sonograms. 
52 malignant and 
88 benign tumors.

Textural 
features: 5×5 
2D-autocorrelation 
matrix.

Acc: 95%; Sens: 98%; Spec: 
93%;  
Mean AUC: 0.731 ± 0.040 
(SD).

Chen et al. (2003)

Feedforward 
Neural Network, 
backpropagation 
algorithm, 7-10-1, one-
leave-out training-test 
methodology, stop 
criteria: mean square 
error.

271 sonograms, 
140 malignant and 
131 benign tumors.

7 morphological 
features.

Acc: 92.8%; Sens: 96.7%; 
Spec: 87.7%;  
Mean AUC: 0.952 ± 0.018 (SD).

Alvarenga et al. (2005)

Feedforward Neural 
Network, GA-Back 
propagation Hybrid 
Training.

152 sonograms, 
100 malignant and 
52 benign tumors.

6 morphological 
parameters; Convex 
polygon parameters; 
circularity.

Acc: 90%; Sens: 90%;  
Spec: 90%, PPV: 93.7%; 
NPV: 84.4%.

Wu and Moon (2008)
SVM, 5-fold-cross-
validation, kernel: non-
linear gaussian basis.

210 sonograms, 
100 malignant and 
120 benign tumors.

Autocovariance 
texture features and 
solidity morphologic 
features.

Acc: 92.86%; Sens: 94.44%; 
Spec: 91.67%;  
Maximum AUC: 0.949.

Huang et al. (2008)

SVM, 10-fold-cross-
validation with all 
characteristics. Feature 
selection with PCA.

118 sonograms, 
34 malignant and 
84 benign lesions.

19 morphological 
features.

Acc: 82.8%; Sen: 94.1%; 
Spec: 77.3%;  
Mean AUC: 0.886 ± 0.031 (SD).

Renjie et al. (2011)

SVM, kernels: linear, 
polynomial, gaussian 
radial basis function 
and sigmoid function.

321 sonograms.

Sonographic 
features; Texture 
features based on 
SGLD matrix.

Acc: 86.92%;  
Sens: 75.18%;  
Spec: 96.11%.
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As shown, the accuracy in first three studies varies 
between 90% and 95% and in the three last studies 
varies between 82% and 92%, suggesting a better 
performance of neural network classifiers over SVM 
classifiers.

Methods
The methodology for breast tumor classification is 

comprised of the following steps: dataset acquisition, 
feature selection, dataset division and classification. 
In the classification step, two techniques were 
investigated: SVM and neural network classifiers. 
The scalar feature selection technique was used to 
identify the best characteristics. The methodological 
topics mentioned will be presented below.

Dataset acquisition

In this retrospective study, using a 7.5-MHz 
linear array B mode 40-mm ultrasound probe 
(Siemens Sonoline Sienna) with axial resolutions 
of 0.45 and 0.49mm respectively, 100 US breast 
tumor images were acquired from 100 patients of 
the National Cancer Institute (INCa, Rio de Janeiro, 
Brazil). It is worth clarifying that this study was 
carried out according to INCa’s diagnosis routine. 
Hence, the US images were obtained after patients’ 
clinical examination and mammography, and then it 
was decided whether the patient should be submitted 
to biopsy.

Only BUS images from patients with 
histopathological diagnosis were selected, resulting in 
an image set of 50 malignant and 50 benign tumors. 

Figure 1 shows BUS image examples available on 
the dataset.

For each image, a rectangular ROI, including 
the tumor and its neighboring area was determined 
by a radiologist (a medical doctor with 30 years of 
experience in mammography and breast ultrasound 
interpretation). The radiologist was requested to select 
the portion of the image background surrounding 
the lesion that includes essential information for the 
routine sonographic diagnosis. Besides, each ROI 
was segmented using the semiautomatic contour 
(SAC) procedure, based on morphological operators 
(Alvarenga et al., 2012).

A set of 22 features, from each lesion was extracted. 
These features are divided into five classes: one class 
related to morphological skeleton; one class related 
to radial normalized length; one class related to a 
lesion convex polygon; one class related to circularity 
and one class related to equivalent ellipse.

Two of them are related to morphological skeleton: 
elliptic normalized skeleton (ENS) and skeleton end 
(S#). Six of them are related to radial normalized 
length (NRL): NRL area ratio (dA), NRL mean (dμ), 
NRL standard deviation (dσ) , NRL entropy (dE), 
NRL roughness (dR) and NRL crossing (dZ). Nine 
of them are related to the lesion convex polygon: 
Overlap ratio (RS), Number of protuberances 
and depressions (NSPD), Lobulation index (LI), 
Normalized residual value (NRV), Proportional 
distance (PD), Convexity (Cnvx), Elliptic normalized 
circumference (ENC), Hausdorff distance (HD) and 
Average distance (MD). Four of them are related 

Figure 1. Two BUS images extracted from the dataset (a) BUS image of a benignant lesion; (b) BUS image of a malignant lesion.
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to circularity: orientation (OE), Circularity A (Ca), 
Circularity B (Cb) and Circularity C (Cc). One of them 
is related to equivalent ellipse: Depth-to-width ratio 
(DWR). All of them are described in (Flores, 2009).

Feature selection

To identify the most important features to reduce the 
feature vector dimensionality while retaining as much 
as possible of their class discriminatory information 
and with the aim of evaluating the effect of a reduced 
set of variables on the classification performance, the 
scalar selection technique with correlation was used 
(Theodoridis and Koutroumbas, 2008).

With the aim to select features leading to large 
between-class distance and small within-class variance 
in the feature vector space, the class separation 
measurement used in this study was Fisher’s 
Discriminant Ratio (FDR) described in Equation 1:
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where, μk1, σk1, μk2, σk2 are mean values and standard 
deviations of characteristic xk in classes w1 and w2 
respectively. Classes w1 and w2 represent malignant 
and benign tumors.

The value of FDRk is calculated for each feature 
xk, k = 1, ..., m. The characteristic xk with higher FDRk 
is selected. This is the xS1 characteristic. To select the 
second characteristic, xS2, the cross correlation coefficient 
is used between two characteristics, xi and xjdefined 
in Equation 2.
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where N is the total number of patterns, xni and xnj 
are values of ith and jth characteristic of pattern 
n. i, j = 1,…, m.

The second characteristic is named xS2 and is the 
one that maximizes Equation 3:
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α1 and α2 express the importance of the first and 
second terms, respectively, in choosing the second 
best characteristic. In this work α1 = α2 = 0.5.

Other selected characteristics, xSk, k = 3, …, m, 
are those that maximize the Equation 4:
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Sets with 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 features 
were produced as a result.

Classification

K-fold Cross Validation

In k-fold cross-validation, the dataset is randomly 
split into k mutually exclusive subsets, the folds, of 
approximately equal size. One fold is excluded and the 
classifier is trained with the k-1 remaining folders, then 
the classifier is tested with the previously excluded folder. 
This process is repeated k times, until all the folders 
have been used to test the classifier. The cross-validation 
estimate of accuracy is the overall number of correct 
classifications, dived by the number of instances in 
the dataset (Kohavi, 1995).

In this study, the dataset was divided into four 
folders, each one with twenty-five patients. Each one 
of the first and second groups contains images of 
12 malignant and 13 benign tumors. Each one of the 
third and fourth groups contains images of 13 malignant 
and 12 benign tumors. These folders were used to train 
and test the SVM classifier and neural networking with 
mean square error and regularization.

Support vector machines

SVM separates patterns belonging to two classes 
defining one hyperplane that maximizes the separating 
margin between these two classes (Haykin, 2009). 
According to Theodoridis and Koutroumbas (2008), 
the hyperplane parameters that maximize the separating 
margin are the weight vector w and polarization w0 
that minimizes Equation 5 and satisfies Equation 6:
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where N is the number of patterns to be classified.
For non-separating classes, the same parameters 

could be determined, minimizing the Equation 7, 
where new variables, ξi, known as slack variables 
are introduced. The optimizing task becomes more 
complex. The goal now is to make the margin as large 
as possible, but at the same time keep the number of 
points with ξ > 0 as small as possible.
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The C parameter in Equation 7 is a positive 
constant that controls the relative influence of the 
two competing terms.

SVMs use kernels for mapping characteristic vectors 
to a large dimension space vector where classes could 
be separated by hyperplanes. In this work the kernels 
were polynomial and Gaussian radial basis function 
(GRBF) used in association with the SVM classifier.
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Simulations were carried out with each subset of 
features obtained in the feature selection step and with 
the original set, which includes all features, using the 
kernels mentioned above varying their degrees from 
1 to 5. The values of C used to aid selecting the best 
classifier vary from 0.03 to 8.

Neural networks

Single layer neural networks are not able to learn 
and generalize complex problems. Multilayers neural 
networks with nonlinear transfer functions, in contrast, 
allow the network to learn nonlinear relationships 
between input and output vectors increasing the space 
of hypotheses that it can represent and providing great 
computing power (Duda et al., 2000).

The number of artificial neurons per layer, as 
well as the number of layers, greatly influences the 
prediction abilities of the neural network. Too few 
of them hinder the learning process, and too many 
of them can depress the generalizing abilities of the 
neural network through over fitting or memorization 
of the training data set. In this work, four-layer neural 
networks with i-n-n-1 architecture, n = 5, 8 and 10 
and i = number of input variables, were employed in 
breast lesion classification.

There are many different learning algorithms to 
train the neural networks. The neural network training 
algorithm used in this work was the Levenberg Marquardt 
(Moré, 1978). This algorithm approximates the error 
of the network with a second order expression, which 
contrasts to the former category that follows a first 
order expression.

The prediction error is minimized across many 
training cycles, known as epochs until the network 
reaches specified level of accuracy. If a network is left 
to train for too long, however, it will be over trained 
and will lose the ability to generalize. Three stop 
training criteria were employed for neural network 
training: mean square error, regularization (Doan 
and Liong, 2004) and early stop (Hagan et al., 2016).

With mean square error criterion, the training was 
finished when its value reached 10-6 or 1000 epochs. 
With regularization criterion, aiming to work with 
more stable neural networks, a new term, proportional 
to the sum of the squared network weights, is added 
to the mean square errors, according to Expression 8:

( ) 1msereg mse msw=γ + − γ  (8)

where γ is the performance factor, a number between 
0 and 1 and mse is the mean square error. In this work 
γ = 0.5, and msw is described in Equation 9:
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The regularization criterion in Expression 9 causes 
lower neural network weights, enforcing a smooth 
network response and improving the generalization 
power of the neural network.

With the early stop training criterion the data set 
is divided into three groups: training, validation and 
testing. In this study, each of these groups consisted 
of 33 patients. The main characteristic of this method 
is that, during the training, although the validation 
group is not used for training, the mean square error is 
evaluated in it. When the mean square error grows in 
this data group, the neural network training is stopped. 
The neural network performance is calculated as a 
mean performance of the validation and test groups.

Results
Reduced set of features

Using the feature selection technique previously 
described, sets with the best 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 
characteristics were generated. Table 2 shows the 
selected features for each of these subsets.

It is noticed a major difference between the 
subset of five features obtained in this paper, namely 
{Cnvx, LI, ENS, PD, ENC}, and with the one obtained by 
Flores et al. (2015), namely {ENS, NSPD, DWR, RS, OE}. 
Comparing these two sets, we notice that there is an 
overlap of only one feature: elliptic normalized skeleton.

Classification

Support vector machines

For each simulation using SVM classifiers, a 
different combination of feature set, kernel, kernel 
order and C was employed and the accuracy, sensitivity, 
specificity and area under ROC curve (AUC) were 

Table 2. Features subsets resulting of scalar feature selection 
technique application.

#Features Subset
2 Cnvx, LI.
3 Cnvx, LI, ENS.
4 Cnvx, LI, ENS, PD.
5 Cnvx, LI, ENS, PD, ENC.
6 Cnvx, LI, ENS, PD, ENC, DW.
7 Cnvx, LI, ENS, PD, ENC, DWR, MD.
8 Cnvx, LI, ENS, PD, ENC, DWR, MD, NRV.
9 Cnvx, LI, ENS, PD, ENC, DWR, MD, NRV, 

NSPD.
10 Cnvx, LI, ENS, PD, ENC, DWR, MD, NRV, 

NSPD, S#.
11 Cnvx, LI, ENS, PD, ENC, DWR, MD, NRV, 

NSPD, S#, HD.
12 Cnvx, LI, ENS, PD, ENC, DWR, MD, NRV, 

NSPD, S#, HD, RS.
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calculated. As SVM classifiers output values are 
0 or 1, the ROC is constituted of just one point and 
not a curve, due to this fact, its value is similar to 
the accuracy.

Table 3 shows the best results obtained using 
SVM classifiers with two different kernels, GRBF 
and polynomial, varying its orders from one to five 
and varying C from 0.03 to 8. All the 22 features 
were used as input variables. The best accuracy value 
obtained is 90% when the Polynomial kernel is used.

Table 4 shows the best classification results 
obtained using SVM classifiers with GRBF and 
Polynomial kernels respectively and using the best 
4, 5, 6, 7 and 8 features as input variables, varying the 
kernels’ orders from one to five. All subsets shown 
in Table 3 were used as input to the SVM classifiers 

but, as seen in Table 5, the classifier performance 
does not vary significantly by inserting new features.

Neural networks

The performance of the three stop training criteria 
mentioned, mean square error, regularization and 
early stop with all 22 features used as input variables 
and different architectures, 22-5-5-1, 22-8-8-1 and 
22-10-10-1 are shown in Table 5, where one can find 
the accuracy, sensitivity, specificity and AUC for each 
of these combinations.

Table 6 shows the accuracy, sensitivity, specificity 
and AUC for the best 4, 5, 6, 7 and 8 input variables 
selected with scalar selection technique with correlation, 
with mean square error, early stop and regularization 

Table 3. Best values of accuracy, sensitivity, specificity and AUC obtained with SVM classifiers using two different kernels, GRBF and 
polynomial, varying their orders from one to five and the C parameter from 0.03 to 8. All the 22 features were used as input variables.

Kernel Order C Accuracy  
(%) Sens. Spec. AUC SEAUC

RBF

1 1.4 83 0.70 0.95 0.831 0.041
2 2.8 89 0.90 0.88 0.891 0.034
3 0.125 89 0.88 0.90 0.891 0.034
4 1.2 88 0.90 0.86 0.881 0.035
5 1.2 88 0.92 0.84 0.882 0.035

Mean value 87.40 0.86 0.86 0.875 0.036

Polynomial

1 0.125 90 0.92 0.88 0.900 0.032
2 0.031 84 0.90 0.78 0.839 0.040
3 1 85 0.83 0.81 0.828 0.042
4 1 80 0.81 0.78 0.762 0.048
5 1 80 0.79 0.81 0.759 0.048

Mean value 83.80 0.87 0.81 0.817 0.042

Table 4. Best accuracy, sensitivity, specificity and AUC of the selected 4, 5, 6, 7 and 8 variables using SVM classifiers with GRBF and 
polynomial kernel. The pair (order, C) used is the one that achieved best results using the whole set of features.

Neural 
network 

training stop 
criterion

#Variables Accuracy (%) Sens. Spec. AUC SEAUC

Mean square 
error

4 91.83 0.93 0.91 0.928 0.027
5 92.20 0.93 0.91 0.928 0.027
6 94.51 0.94 0.95 0.957 0.021
7 95.03 0.95 0.95 0.953 0.022
8 95.55 0.95 0.96 0.968 0.018

Early stop

4 90.19 0.91 0.89 0.924 0.028
5 90.24 0.92 0.89 0.923 0.028
6 93.02 0.93 0.93 0.961 0.020
7 95.92 0.96 0.95 0.984 0.013
8 95.71 0.95 0.96 0.969 0.018

Regularization

4 90.88 0.92 0.89 0.926 0.028
5 91.38 0.91 0.91 0.922 0.028
6 93.86 0.94 0.93 0.975 0.016
7 94.86 0.94 0.94 0.971 0.017
8 93.86 0.95 0.92 0.965 0.019
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training stop criteria, and 4-5-5-1, 5-5-5-1, 6-5-5-1, 
7-5-5-1 and 8-5-5-1 architectures.

Table 7, adapted from the study of Flores et al. 
(2015), shows the performance of some previous 
studies published for breast cancer classification. 
In this Table are shown: the category of the study 
- M, T or C (M – studies that use morphological 
characteristics, T – studies that use texture features 
and C – studies that use both types of features), the 
Mean value of Area Under ROC Curve - AUC, the 
standard deviation or AUC – SD and the coefficient 
of variation CV (SD/AUC).

Discussion
Analyzing the results shown in Table 3, when using 

the whole features dataset as input, the best mean 
accuracy value of the SVM classifier, 87.40%, was 

obtained with RBF kernel. The mean AUC of RBF 
kernel was 0.875, while the mean AUC of Polynomial 
kernel was 0.817. Assessing the significance of the 
difference between the areas that lie under these two 
ROC curves (Hanley and McNeil, 1982), we found 
that P = 0.149 > 0.05, the null hypothesis should not 
be rejected (i.e., the SVM classifier with RBF kernel 
was not superior to the SVM classifier with polynomial 
kernel, at the 5% significance level).

As shown in Table 4, one can observe that concerning 
SVM classifiers with polynomial kernel, the scalar 
feature selection technique with correlation does not 
improve the value of AUC performance regarding 
the use of the 22 features. Using the RBF kernel, 
the same technique slightly improves the values of 
AUC, when using 6 and 7 characteristics, regarding 
the 22 features.

Table 5. Accuracy, sensitivity, specificity and AUC of three neural network architectures, for mean square error, early stop and regularization 
training stop criteria. All the 22 features were used as input.

Neural network training 
stop criterion Architecture Accuracy 

(%) Sens. Spec. AUC SEAUC

Mean square error
22-5-5-1 95.55 0.96 0.95 0.975 0.016
22-8-8-1 95.03 0.96 0.94 0.974 0.016
10-10-1 95.52 0.97 0.94 0.947 0.023

Mean value 95.37 0.96 0.94 0.965 0.018

Early stop
22-5-5-1 96.98 0.97 0.96 0.984 0.012
22-8-8-1 93.88 0.94 0.94 0.978 0.015

22-10-10-1 94.87 0.94 0.93 0.979 0.015
Mean value 95.24 0.95 0.94 0.980 0.014

Regularization
22-5-5-1 96.47 0.98 0.95 0.978 0.015
22-8-8-1 95.55 0.97 0.94 0.968 0.018

22-10-10-1 96.17 0.98 0.95 0.973 0.017
Mean value 96.06 0.97 0.94 0.973 0.017

Table 6. Accuracy, sensitivity, specificity and AUC of a neural network with the best 4, 5, 6, 7 and 8 input variables, for mean square error, 
early stop and regularization training stop criteria, with 4-5-5-1, 5-5-5-1, 6-5-5-1, 7-5-5-1 and 8-5-5-1 architectures.

Neural network training 
stop criterion #Variables Accuracy 

(%) Sens. Spec. AUC SEAUC

Mean square error

4 91.83 0.93 0.91 0.928 0.027
5 92.20 0.93 0.91 0.928 0.027
6 94.51 0.94 0.95 0.957 0.021
7 95.03 0.95 0.95 0.953 0.022
8 95.55 0.95 0.96 0.968 0.018

Early stop

4 90.19 0.91 0.89 0.924 0.028
5 90.24 0.92 0.89 0.923 0.028
6 93.02 0.93 0.93 0.961 0.020
7 95.92 0.96 0.95 0.984 0.013
8 95.71 0.95 0.96 0.969 0.018

Regularization

4 90.88 0.92 0.89 0.926 0.028
5 91.38 0.91 0.91 0.922 0.028
6 93.86 0.94 0.93 0.975 0.016
7 94.86 0.94 0.94 0.971 0.017
8 93.86 0.95 0.92 0.965 0.019
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The best accuracy value obtained with SVM 
classifiers, 91%, was achieved using a RBF kernel 
and the best 6 features. It corresponds to an AUC of 
0.911. With the whole set of features a mean AUC of 
0.875 was obtained. Assessing the significance of the 
difference between the areas that lie under these two 
ROC curves (Hanley and McNeil, 1982), we found 
that P = 0.221 > 0.05, the null hypothesis should be 
rejected (i.e., the SVM classifier with 6 features was 
not superior to the classifier with whole features, at 
the 5% significance level).

Although we tested many different values of C 
in order to improve the classification performance, 
Tables 3 shows that the best results were obtained 
varying C from 0.031 to 2.8.

Regarding neural networks performance in 
terms of AUC, Table 4 shows that, when using the 
22 characteristics, regularization and early stop neural 
network criteria performed better than mean square 
error criterion. This behavior is due the fact that the 
first two criteria are used to improve neural network 
generalization. The best mean value of AUC, 0.980, 
was obtained when using the architecture 22-5-5-1 
and the early stop criterion.

Comparing the results in Tables 5 and 6, the 
following can be seen: for the mean square error, 
both AUC and accuracy obtained with 8 features are 
equal to the ones obtained with 22 features, for early 
stop criterion, the best performance is obtained with 
the best 7 selected features. The AUC value is equal 
to the one obtained with 22 features. The best mean 
value of AUC obtained with neural networks, 0.980, 
is superior to the best mean value obtained with the 
SVM classifier, 0.875. Assessing the significance of 

the difference between the areas that lie under these 
two ROC curves, we found that P = 0.003 < 0.05, 
the null hypothesis should be rejected (i.e., the neural 
network classifier with early stop criterion is superior 
to SVM classifier, at the 5% significance level).

Although, in terms of AUC, there are no statistical 
differences in the results obtained with a lower number 
of features and with the whole set of features, we 
understand that feature selection is an important stage 
of the classification process as it reduces the features 
vector dimensionality removing possible redundancy, 
filtering noises and therefore helping improving the 
classifiers and reducing computational efforts, as can 
be noticed with the SVM classifier.

Using the minimal-redundancy maximal-relevance 
(mrMR) criterion, based on mutual information (MI) 
technique, Flores et al. (2015) proposed the use of 
a reduced set with 5 morphological features for 
malignant lesion detection in BUS images, namely 
elliptic normalized skeleton, orientation, number 
protuberances and depressions, depth-to-width ratio 
and overlap ratio. In this study however, the best 
results obtained with a reduced set of 7 features: 
convexity, lobulation index, elliptic normalized 
skeleton, proportional distance, elliptic normalized 
circumference, depth-to-width ratio average distance 
and normalized residual value. Comparing these two 
subsets, we notice that they have a different number of 
features, and there is an overlap of only two variables: 
elliptical normalized skeleton and depth-to-width 
ratio. This difference suggests that the classifications 
results depends both on the feature selection method 
and on classifiers used.

Table 7. Statistical results of distinct feature sets in terms of AUC value, where SD, and CV are the standard deviation and coefficient of 
variation attained by each set. The sets are ordered from the best to the worst classification performance (adapted from Flores et al., 2015).

Study Category Mean SD CV
This study (neural network with 
regularization)

M 0.984 0.012 0.012

Chen et al. (2003) M 0.952 0.018 0.008
Flores et al. (2015) M 0.942 0.009 0.008
Alvarenga et al. (2010) M 0.916 0.013 0.010
Horsch et al. (2002) C 0.915 0.009 0.008
Shen et al. (2007) C 0.904 0.011 0.010
Flores et al. (2015) T 0.897 0.009 0.010
Huang et al. (2008) M 0.886 0.031 0.034
Chen et al. (2005) T 0.818 0.022 0.019
Chang et al. (2003) T 0.801 0.020 0.021
Huang et al. (2006) T 0.797 0.018 0.023
Alvarenga et al. (2012) C 0.635 0.129 0.015
Yang et al. (2013) T 0.581 0.105 0.019
Alvarenga et al. (2007) T 0.565 0.036 0.018
Piliouras et al. (2004) T 0.561 0.049 0.022
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The results presented in Table 7 show that the 
improvement in accuracy and AUC over time is 
incrementally. A direct comparison of the values is not 
possible, because the image databases used in these 
studies were extracted from different populations 
and the image quality is different, inducing a 
different behavior of the classifiers. The studies of 
Alvarenga et al. (2007, 2010, 2012), Flores et al. 
(2015), and this study, nevertheless, used different 
samples of a same population and the image database 
has the same quality. In the sequence, we compare 
the best results of these studies, the one reported by 
study of Flores et al. (2015), with the result obtained 
in this study.

The best mean value of AUC obtained is this study, 
0.980, is better than the value of 0.942, obtained by 
Flores et al. (2015) (see Table 7) using a different sample 
of a same population (413 benign and 228 malignant 
lesions). Assessing the significance of the difference 
between the areas that lie under these two ROC curves, 
we found that P = 0.011 < 0.05, the null hypothesis 
should be rejected (ie, the AUC obtained in this work 
is superior to the value of AUC obtained in the work 
of Flores et al. (2015), at the 5% significance level).
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