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Estimating the mechanical competence parameter of the  
trabecular bone: a neural network approach

Érica Regina Filletti*, Waldir Leite Roque

Abstract Introduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges 
the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure 
of the trabecular bone structural quality.  Methods: As the MCP is estimated for 3D images and the Young 
modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based 
on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae 
and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius 
magnetic resonance image samples (MRI).  Results: It is shown that the ANN was able to predict with very 
high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal 
radius bone by MRI.  Conclusion: There is a strong correlation (R2 = 0.97) between both techniques and, 
despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits 
of agreement to estimate the MCP. 
Keywords: Osteoporosis, Trabecular bone, Mechanical competence, Artificial neural network, Machine 

learning.

Introduction
Osteoporosis is a prevalent disease among the 

elderly population and due to the increase in life 
expectancy it is becoming a public health problem 
with very high cost to both public and private health 
systems (Dimai et al., 2012). Osteoporosis causes 
a remarkable bone mass loss and trabecular bone 
degradation, which normally leads to an increase in 
bone fragility and an augmented fracture risk. One of 
the main functions of the bone is to support or bear 
loads applied on it. For this reason, it should be strong 
enough to avoid breakage and keep its stiffness. 
Therefore, it is important to known about bone 
strength and stiffness, particularly when investigating 
the effect of different external stimuli.

It is now known that the trabecular microarchitecture 
degradation impacts the fragility fracture risk. 
The trabecular bone structure is organized as a network 
of rod-like and plate-like struts forming a tortuous 
grid, which influences the mechanical behavior of the 
structure. Recently, in (Roque et al., 2013a; Roque et al., 
2013b) it was shown that the trabecular bone volume 
fraction (BV/TV), the network connectivity (EPC), 
the trabecular tortuosity (τ) and the elasticity (E) are 
relevant parameters to establish the trabecular bone 
mechanical competence. Using these four parameters, 
by means of the principal component analysis (PCA), 
a mechanical competence parameter (MCP) was 

defined and applied to grade trabecular bone fragility 
for three different cohorts.

Principal component analysis (PCA) is a technique 
that reduces a complex data set to a lower dimension 
to reveal the sometimes hidden, simplified structure 
that often underlie it. The variable reduction is 
applicable only when there is a strong correlation 
between the data sets (Jolliffe, 2002). The linear 
correlation analysis of the parameters BV/TV, EPC, 
τ and E, has shown to be very high. When the PCA 
is applied to these four trabecular bone parameters, it 
merges morphological, geometrical and mechanical 
information about the trabecular bone structure into 
a unique parameter. The MCP was defined as the 
principal component in the PCA.

Artificial neural network (ANN) is a technique 
that has attracted much attention as an approach to 
estimate quantities when there are complex relationships 
between input and output variables, particularly when 
no links are known among them a priori. Amongst 
several advantages of neural network models, it can 
be emphasized that they are easy to use and to update, 
possess large degree of freedom and give accurate 
prediction at high speed (Nafey, 2009; Niemi et al., 
1995). The main one is the ability to generalize, i.e., 
to learn from examples. In this regard, after an ANN 
has been satisfactorily trained and tested, it is able to 
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predict the output of new input data in the domain 
covered by the training examples. In addition, ANNs 
can also include available theoretical knowledge about 
the process. As a consequence, some researchers have 
devoted their time to study the application of neural 
networks models to the trabecular bone characterization 
and strength analysis.

Christopher and Ramakrishnan (2007) evaluated 
the mechanical strength of the trabecular structure of 
the human femur using digital processing of images 
obtained by radiographs and artificial neural networks 
to classify normal or abnormal bone structure. 
The results have shown that the method is able to 
provide useful information about the strength of the 
femur trabecular structure. Gregory et al. (1999) have 
used the Fourier transform and neural networks to 
identify changes in the structure of the trabecular 
bone. Hambli (2011) developed an approach based 
on finite element methods and neural networks to 
estimate the density and length of cracks in trabecular 
bone. The results have shown a good qualitative 
agreement compared with experimental results 
published previously.

In this regard, in a previous study (Filletti and 
Roque, 2015), the authors investigated the application 
of an ANN to predict the MCP for 20 magnetic 
resonance image (MRI) samples based on a training 
set of 83 in vivo distal radius MRI samples. The ANN 
was able to predict the MCP of the test samples 
with a relative average error of 6.5%. As the ANN 
was applied to a set of in vivo distal radius MRI 
samples, in this paper an investigation on how the 
ANN responds to a set of samples from different 
bone sites, vertebrae and distal radius, using MRI and 
μCT as two different imagery techniques is carried 
out. The results obtained by the ANN have shown 
to be very satisfactory, with a relative average error 
of 11%, when considering as the training set both 
bone samples merged in a unique set. Therefore, 
while the paper Filletti and Roque (2015) had only 
distal radius bone samples with MRI, in this paper 
it is shown that the ANN can estimate the MCP 
for a more general case, including samples that 
originate from different bone sites and different 
imaging techniques.

Thus, this paper shows that the ANN technique 
can be extended to estimate the MCP for the trabecular 
bone from different sites and imaging devices without 
appealing to calculate it through PCA. Once the ANN 
is trained, it will provide a simple, accurate and faster 
method to estimate the MCP, thus avoiding PCA, 
which is a much more laborious technique.

Methods

To investigate the potentiality of the ANN, the current 
work considers three different cohorts. Two in vitro 
μCT sets of trabecular bone 3D image samples: one set 
from distal radius containing 15 images and another 
containing 29 L3 vertebral samples. The final isotropic 
resolution was 34μm and the analyzed direction was 
craniocaudal to the vertebrae and distal-proximal to 
the radius. These two set of trabecular bone samples 
were obtained from human cadavers following all the 
technical procedure requirements. Additional details 
can be found in Roque and Alberich-Bayarri (2015), 
Arcaro (2013) and references therein.

The third cohort was composed of 103 MRI radius 
samples from in vivo human subjects, captured from 
the distal metaphysis and from a cohort including 
healthy subjects and a mix of bone mineral density 
stages, which includes osteopenic and osteoporotic 
subjects. The MRI acquisitions were performed in a 
3 Tesla system, scanned in 3D using a T1-weighted 
gradient echo sequence (TE/TR/a=5 ms/16 ms/25 Å) 
and with a nominal isotropic resolution of 180 μm. 
Full details about all these samples can be found in 
(Roque et al., 2013b).

Figure 1 shows 3D images of two pair of trabecular 
bone samples, vertebral bodies at the top and distal 
radius at the bottom. On the left side, for both, it 
can be noticed that the structures are more disrupted 
than those on the right side, due to the advanced 
osteoporosis. Figure 2 shows 3D images of two distal 
radius trabecular bone samples, with the image on 
the right side more disrupted.

Mechanical competence parameter

Principal component analysis (PCA) technique for 
variable reduction is applicable only when there is a 
strong correlation between these variables (Jolliffe, 
2002). In (Roque et al., 2013a) the mechanical 
competence parameter (MCP) was defined to grade the 
trabecular bone fragility by means of four trabecular 
bone fundamental quantities: volume fraction (BV/TV), 
network connectivity via the volumetric Euler-Poincaré 
characteristic (EPCV), tortuosity (τ) and the Young 
modulus of elasticity (E).

In this paper, the MCP was applied to grade 
the TB fragility of the three cohorts (Roque and 
Alberich-Bayarri, 2015), with the distal radius μCT 
samples given by

MCPDR = 0.52 × BV/TV – 0.49 × EPCV +  
0.51 × E – 0.48 × τ,

 (1)
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MCP for the vertebrae μCT samples is given by

MCPV = 0.55 × BV/TV – 0.48 × EPCV +  
0.50 × E – 0.47 × τ,

 (2)

and MCP for the MRI distal radius samples is given by

MCPMRDR = 0.53 × BV/TV – 0.50 × EPCV +  
0.51 × E – 0.45 × τ. (3)

Once the four parameters are provided in Equations 
1, 2 and 3, the MCP for each set of samples can be 
determined. To set the range of the MCP in the interval 
[0, 1], a normalization procedure is defined as

k MIN
N

MAX MIN

MCP MCPMCP
MCP MCP

−
=

−
  (4)

where MCPk is sample k MCP value, MCPmax and 
MCPmin are the maximum and minimum MCP values, 
respectively. In a cohort, the worst trabecular structure 
has MCPN = 0 and the best MCPN = 1. The MCPN 
for the three cohorts can be found in Arcaro (2013).

Neural network algorithm implementation

In this work it is used a feed forward network, 
i.e., the input of a specific layer is formed only by 
the values of the preceding layer. The architecture 
of such a network is composed of an input layer, a 
certain number of hidden layers and an output layer in 
forward connections. Each neuron in the input layer 
represents just a single input parameter. These values 
are directly transmitted to the subsequent neurons 
of the hidden layers. The neurons of the last layer 
represent the ANN outputs.

The output yi,j of neuron i in a layer j is calculated as

, ,( )i j i jy f v=   (5)

, , , 1 , 1 ,
1

L
i j k i j k j i j

k
v w y b− −

=
= +∑   (6)

where f is the activation function, L is the number of 
connections to the previous layer, wk,i,j-1 corresponds 
to the weights of each connection and bi,j is the bias. 
In this work, the activation functions used in the neural 

Figure 1. 3D visualization of two μCT distal radius and vertebra trabecular bone samples.

Figure 2. 3D visualization of two MRI distal radius trabecular bone samples.
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network were the tangent sigmoid in the hidden layers 
and a linear function in the output layer, expressed 
respectively as

,
,

2( ) 1
(1 exp( 2 ))i j

i j
f v

v
= −

+ −
  (7)

, ,( )i j i jf v v=   (8)

The training process in the ANNs involves presenting 
a set of examples (input patterns) with known outputs 
(target output) (Jenkins, 1997). The system adjusts the 
weights wk,i,j of the internal connections to minimize 
errors between the network output and target output. 
The knowledge is represented and stored by the weights 
of the connections between the neurons.

Back propagation is probably the most used 
training algorithm and it is particularly well adapted to 
feed-forward architecture of the multi-layer network. 
It is based on the iterative application of a discrete 
gradient descent algorithm, designed to compute the 
connection weights so minimizing the total mean-square 
error between the actual output of the network and 
the target output. In general, the back propagation 
algorithm, which is implemented in this work, can 
be summarized as follows (Haykin, 1999):

1. Initialize the ANNs parameters bi,j and wk,i,j 
with random numbers;

2. Calculate the outputs of all the neurons layer 
by layer, starting with the input layer until the 
output layer using Equations 5-8;

3. Calculate the mean square error by:

2

1

1 ( )
2

N
i i

i
MSE d y

=
= −∑   (9)

where yi is the actual output of the i-th output node, 
di is the corresponding desired output and N is the 
number of output nodes;

4. Calculate the derivatives of the error with 
respect to bi,j and wk,i,j;

5. Update the weights and bias along the negative 
gradient of the MSE and a specified learning 
rate γ

, ,
,
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b
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w
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∂
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6. Repeat by going back to step 2, successively 
modifying bi,j and wk,i,j, up to a certain number 
of epochs to be achieved or until MSE is 
sufficiently small.

The neural network implemented here has four 
inputs and one output. Various architectures were 
trained and tested. The neural model that had the 
best performance, obtained by trial and error, has two 
hidden layers with twelve and six neurons, respectively.

The training procedure comprehended the acquisition 
of the volume fraction, connectivity, tortuosity and 
Young modulus of elasticity (input patterns) obtained as 
described in the previous section. In total, 118 examples 
of data were considered to construct a database applied 
to artificial neural network parameters that could be 
adjusted. From those examples, 23 were from vertebrae 
by μCT, 12 from distal radius by μCT and 83 from 
distal radius by MRI samples. The neuron of the 
output layer is responsible for estimating the MCP.

To determine the values of the learning rate, the 
number of epochs as well as the number of neurons 
in the intermediate layers of the neural networks, an 
optimization of the parameters of the neural networks 
was performed by trial and error, in order to diminish 
the error within a reasonable time. The learning rate 
used in the neural network was 0.1 and the training 
time was 35 minutes, in a processor Intel Xeon CPU 
E-3 1225 V2 with 3.2 GHz and 16 GB of RAM. The 
error of the training was the order of 10-4, as shown 
in Figure 3. One method to avoid over-training is 
to follow the performance of the neural network on 
a test set not presented in the training. The optimal 
parameters of the ANN were chosen empirically 
observing the minimum error and reached the capacity 
of maximum possible generalization. In this work, 
the training stopped at 300000 epochs when the error 
of the test set reached 11%, avoiding over-training.

For the generalization, 29 data different from 
those used in the training set were presented to the 
neural network, being 6 vertebrae by μCT, 3 from 
distal radius by μCT and 20 from distal radius by 
MRI. The division of the examples in training and 
test sets was made randomly and a good correlation 
among the data was obtained, as shown in Figure 4.

Results
Tables 1, 2 and 3 present the MCPN computed 

from Equations 1, 2 and 3 with data provided in 
Arcaro (2013), and the response of the ANN for the 
29 data contained in the test set. As it can be noticed, 
the results of the ANN for the test samples are quite 
satisfactory, with a Pearson correlation r = 0.9848; the 
two-tailed P value equals to 0.9563, considered to be 
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not statistically significant within a 95% confidence 
interval ranging from [-0.084444, 0.079927].

To compare ANN and PCA techniques to estimate 
the MCPN, the Bland-Altman plot was considered and 
presented in Figure 5. From that, it can be inferred that 
the two methods of measurement agree sufficiently 
close and that only three points were outside the 95% 
confidence interval, while most of them are near the 
line of equality.

Discussion

MCP is a parameter introduced by Roque et al. 
(2013a) to provide a way to grade the trabecular 
bone fragility based on volume fraction, connectivity, 
tortuosity and elasticity, four fundamental quantities 

Figure 3. Decrease of the error during the training of the neural network to estimate the MCPN.

Figure 4. MCP correlation between the PCA and ANN for the test samples.

Table 1. MCPN obtained by PCA and ANN algorithm for the 3 distal 
radius samples by μCT.

Sample MCPPCA MCPANN

07 0.3247 0.2335
08 0.1951 0.2224
09 0.0450 0.0288

Table 2. MCPN obtained by PCA and ANN algorithm for the 6 
vertebra samples by μCT.

Sample MCPPCA MCPANN

01 0.2475 0.3433
02 0.1655 0.1731
03 0.5487 0.5250
04 0.3908 0.3871
05 0.3617 0.3629
06 0.4223 0.4176
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that characterize the bone mechanical structure. 
In Roque et al. (2013a), Roque et al. (2013b) it has 
been shown that the MCP can suitably be defined 
for different trabecular bone sites using distinct 
image scanning devices and distinct mechanical test 
procedures.

The approach used in Roque et al. (2013a) is 
based on the principal component analysis whose 
principal component defines the MCP equation. 
In this paper an artificial neural network approach 
was applied to estimate the MCP based on two sets of 
in vitro images samples from two distinct bone sites, 

Table 3. MCPN obtained by PCA and ANN algorithm for the 20 distal 
radius samples by MRI.

Sample MCPPCA MCPANN

10 0.0679 0.0783
11 0.0697 0.0688
12 0.0477 0.0581
13 0.1660 0.1678
14 0.0912 0.0885
15 0.0809 0.0800
16 0.0185 0.0151
17 0.0892 0.0905
18 0.5648 0.5731
19 0.0308 0.0406
20 0.1930 0.1924
21 0.1462 0.1460
22 0.0761 0.0832
23 0.3457 0.3494
24 0.0698 0.0731
25 0.0702 0.0746
26 0.2459 0.2453
27 0.0689 0.0867
28 0.3370 0.3397
29 0.0826 0.0840

Figure 5. Bland-Altman plot of the MCPN values presented in 
Tables 1, 2 and 3.

L3 vertebrae and distal radius, and one set of in vivo 
MRI distal radius samples. The results presented here 
have shown the potentiality of the ANN to estimate 
the MCP taking into account different bone sample 
sites, distinct imagery devices and the subject form 
as in vivo or in vitro.

The normalized MCP was estimated by both 
approaches and the results were compared by means 
of the Bland-Altman plot, which has shown that these 
techniques provide very similar results. In other words, 
the ANN performs essentially as good as the PCA to 
estimate the MCPN, within the limits of agreement. 
Of course, as neither is considered the gold standard 
technique to estimate the MCPN, as much as the 
results are concerned, the ANN can suitably be used 
to estimate the MCP.

Overall, in this paper an ANN was used to estimate 
the mechanical competence parameter based on μCT 
and MRI image samples of vertebrae and distal radius 
bones, together. The ANN predicted very well the MCP 
for a set of 38 test data composed of 6 vertebrae and 
32 distal radius samples. The correlation between the 
MCP evaluated by the PCA and ANN is quite high 
(R2 = 0.97) and the Bland-Altman analysis indicates 
that both approaches are comparable within 95% 
confidence interval.

The ANN technique has shown to be a good 
alternative to estimate the MCP, avoiding the cost of 
the PCA, which requires the individual computation 
of the MCP for each cohort. Of course, further 
studies are required to investigate whether a unique 
ANN can be applied to estimate the MCPN from any 
trabecular bone site, as in this paper only two sites 
were investigated, and also independently of the 
imagery technique.
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