
Abstract:
Temperature modelling of human tissue subjected to ul-
trasound for therapeutic use is essential for an accurate 
instrumental assessment and calibration. The existence of 
accurate temperature models would enable a safe and effi-
cient application of the thermal therapies. The main objective 
of this work is the comparison between the performance of 
non-linear models and linear models for punctual temperature 
estimation in a homogeneous medium. The final goal of the 
work hereby reported is the construction of neural models for 
“in-vivo” temperature estimation. The linear models employed 
were AutoRegressive with eXogenous inputs (ARX), and the 
non-linear models used were radial basis functions neural 
network (RBFNN). The best-performed RBFNN structures 
were selected using the Multi-objective Genetic Algorithm 
(MOGA). The best performed neural structure present a maxi-
mum absolute error of 0.2 ºC, which is one order magnitude 
less than the one presented by the best ARX.
Keywords: Temperature modelling, Neural networks, Multi-
objective genetic algorithms, Ultrasound.

Resumo:
A modelagem da temperatura em tecidos humanos, quando os 
mesmos são sujeitos a ultra-som de terapia, é um aspecto essencial 
para um correto controle e calibração da instrumentação de terapia. 
A existência de modelos precisos possibilitaria um uso mais seguro 
e eficiente das terapias térmicas. O objetivo principal deste trabalho 
é a comparação entre a performance de um modelo linear e de um 
modelo não linear, na estimação pontual da temperatura num meio 
homogêneo. O objetivo final do trabalho é a construção de modelos 
para estimação in-vivo da temperatura. Os modelos lineares aplica-
dos foram “autoregressive models with exogenous inputs” (ARX), 
enquanto que os modelos não-lineares aplicados foram “radial basis 
functions neural networks” (RBFNN). As melhores estruturas para 
as RBFNN foram selecionadas usando o “multi-objective genetic 
algorithm” (MOGA). A melhor estrutura RBFNN apresentou um 
erro máximo absoluto de 0,2 ºC, que é inferior em uma ordem de 
grandeza ao erro cometido pelo melhor modelo ARX.
Palavras-chave: Modelagem de temperatura, Redes neuronais, 
Algoritmos genéticos multi-objectivo, ultra-som.
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Introduction 
Accurate determination of human tissue temperature 
is a fundamental aspect concerning the secure applica-
tion of therapeutic ultrasound instrumentation in can-
cer treatment (Hyperthermia). The main impediment 
for the generalised clinical use of hyperthermia is the 
lack of accurate knowledge of localised temperature 
patterns in time and space, which would enable a le-
sion-less treatment. 

Having in mind non-invasive temperature esti-
mation in time and space, previous work in the field 
relates linearly the changes in sound velocity and 
medium expansion with changes in temperature. The 
temperature range considered was between 20 and 24 
ºC, using a therapeutic transducer to induce heat, and a 
diagnostic transducer to extract characteristics (sound 
velocity and medium expansion) from the medium 
(Simon et al., 1998).

The main objective of the work hereby presented is 
to compare the performance of radial basis functions 
neural networks (RBFNN) versus linear ARX models, 
in punctual temperature estimation in a homogeneous 
medium radiated by therapeutic ultrasound. The tem-
perature variation indicators considered were the am-
plitude of the fundamental component of the intensity 
spectrum, and the measured past temperature values. 
The final goal is to build a neural model to estimate 
the temperature variations in biological tissues under 
therapeutic ultrasound.

Materials and Methods

Data acquisition
The experimental setup used to collect data is presen-
ted in Figure 1 . The real data used in this work are 
temperature and acoustic intensity signals, in a point  
48 mm distant (axial distance) from an ultrasonic 

therapeutic transducer, in a glycerine (homogeneous 
medium) tank. Data was acquired during approxima-
tely 110 min. At each 10 seconds a temperature value 
was recorded, as well as a window of 5µs of the acoustic 
intensity signal, corresponding to 2000 points of the 
intensity waveform. 

Three sets of signals were acquired at 3 MHz in 
continuous operating mode, at three different intensi-
ties: 1 Watt/cm2, 1.5 Watt/cm2, and 2 Watt/ cm2. The 
temperature ranges recorded are presented in Table 1. 
Glycerine was insonified only in the first 60 min, by 
the therapeutic device (Ibramed Sonopulse, São Paulo). 
During the remaining 50 minutes the acoustical energy 
was maintained at a zero level, while temperature 
variations were observed and recorded.  

Data processing
The construction of neural and ARX models requires 
the computation of features from the intensity signals 
in order to estimate temperature. In this paper only the 
fundamental component of the intensity spectrum, 
located at 3 MHz was computed. 

Accurate development of neural and ARX models 
requires pre-processing of data. This phase normally 
encompasses a filtering operation followed by a nor-
malisation operation. The filtering operation reduces 
the high frequency noise introduced by instrumenta-
tion. The normalisation is necessary to enable a correct 
training of the models. That is, the attainment of well 
conditioned models with a high capacity of generalisa-
tion (good performance in different situations). In this 
work the measured temperature and the fundamental 
component of the intensity spectrum present smooth 
waveforms, making unnecessary the filtering process. 
The temperature and the fundamental component of 
the intensity waveforms were normalised in amplitude 
between 0 and 1.

Generically, the construction of a neural model 
encompasses a training phase and a test phase. In 
the training phase the neural network parameters are 
computed. In the test phase the generalisation capaci-
ties of the obtained neural model are accessed, using 
a different data set. In this paper the data collected at 
1 Watt/cm2 was used for training, while the data col-
lected at 1.5 Watt/cm2 was used for testing.

RBFNN construction
An RBFNN is a three fully connected layers neural 
network. The first layer is a set of inputs, the second 
(hidden) layer is formed by a set of processing ele-
ments, called neurons. The outputs of the hidden layer 

Figure 1. Experimental setup
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are linearly combined at the last layer to calculate the 
overall network output. The input/output relation for 
a RBF is given by:

	
(1)

where n is the number of neurons in the hidden layer, 
b is the bias term, ||.|| is a norm (an Euclidean norm 
was employed), and  is a set of non-linear 
radial basis functions weighted by . The basis 
functions are centred at (centres) and are eva-
luated at points jx . Normally the basis functions are 
Gaussians (Teixeira el al., 2004):

 
(2)

In the construction of a RBFNN several questions 
arise (Ferreira et al., 2003): What is the appropriate 
number of neurons in the hidden layer? Which are 
the important input variables for a good model? What 
are the important lags of those variables? Which is the 
maximum lag to be considered?

The answers to these questions depend on the 
problem under study, are neither unique nor easy 
to find. The number of possible structures can be 
enormous, disabling an exhaustive search due to the 
necessary computational time. To solve this problem 
a multi-objective genetic algorithm (MOGA) (Fonseca 
and Fleming, 1996; 1998) was applied to select the best-
fitted RBFNN structures.

The input variables considered for the RBFNN were 
the fundamental component of the intensity spectrum 
(Im), and the measured temperature (T). The number 
of model inputs was restricted to the interval [2,30], 
while the possible number of neurons is an integer in 
the interval [2,15].

In this work the MOGA was defined to have 100 
generations, of 100 RBFNN (individuals) each. The ob-
jectives to minimise were: training RMSE, test RMSE, 
maximum of the error auto-correlation (Ree), and the 
maximum of the cross-correlation between the inputs 
and the error (Rue). Having in mind the attainment of 
models with a high generalization capacity, the test 
RMSE was defined as a goal with value 0.003. The 

maximum of the correlation tests (Ree e Rue) was defined 
as a goal with value  , where N is the 
number of points in the training set. If Ree and Rue have 
values inferior to CI then the models are considered 
adequate with 95% of confidence (Ferreira et al., 2003). 
In this work N = 377 and CI is approximately 0.1.

During the MOGA, the training of each individual 
was performed by the Levenberg-Marquardt (LM) al-
gorithm, with the Early-Stopping termination criteria 
(Ferreira et al., 2003).

The MOGA parameters were: 10% of random immi-
grants (RBFNN), selection pressure (probable number 
of copies of the best individual) of 2, crossover rate of 
0.7, and mutation rate of 0.5.

After the MOGA selection, the validation of the 
best individuals was performed with a third data 
set, called validation data. This data results from the 
measure at 2 Watt/cm2 of intensity. Such as in the 
training and test data, normalization between 0 and 
1 was performed.

ARX construction
The most used ARX model is defined by the following 
difference equation:

 
(3)

This model relates the actual output y[t] with a 
finite number of values of the output y[t-k], and of the 
input u[t-k]. The structure of the model is completely 
defined by three parameters: number of poles (na), 
number of zeros (nb-1), and time delay of the system 
(nk). In this work  and  coefficients were 
determined using the least squares strategy.

Results
This section presents the best models obtained with 
the MOGA, called preferable models (Ferreira et al., 
2003), as well as the best-performed ARX model (li-
near model). The same data sets were used in both 
strategies.

The preferable set is formed by 11 models. The 
inputs and other characteristics of these models are 
presented in Tables 2 and 3, respectively.

Table 1. Temperature ranges
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The numbers in Table 2 are referred with the Im and 
T lags. For example model number 10 has as inputs:  
Im(k-19), Im(k-45), T(k-1), T(k-8), T(k-13), and T(k-22).

The columns Ree , Rue , ||W||, #Neu, and Val. 
RMSE in Table 3 presents the maximum of the error 
autocorrelation, the maximum of the cross-correlation 
between the inputs and the error, the linear weights 
( ) norm, the number of neurons, and the RMSE 
in the validation set, respectively. The values in bold 
indicate that the goal associated with the characteristic 
was fulfilled.

The best ARX structure was computed considering 
a scanning of 48 lags (na = 1,...,48, nb = 1,...,48) for each 
variable, and a null delay for the inputs (nk =0). This 
model presents a RMSE in the validation set of 0.0253, 
and a maximum absolute error of 2.1 ºC.

Discussion
From the analysis of Table 2 it is possible to realise that 
the MOGA selects few lags of Im (intensity) and many 
lags of T (temperature). The input T(k-1) appears in 
all preferable RBFNN, demonstrating the high depen-
dency of the actual temperature on the temperature in 
the past 10 seconds. This fact indicates that the MOGA 

converges to a set of models with a physical meaning. 
The temperature 6 samples in the past (T(k-6)), that is  
1 minute in the past appears with an absolute fre-
quency of 9, disclosing its importance. The medium 
lags (between 20 and 40) appear with some frequency, 
in special the lags 20 and 35 with an absolute frequency 
of 6 and 5, respectively. The dependence of T(k) on the 
higher lags of the temperature is also visible. This affir-
mation is based on the appearance of lags with values 
between 39 and 47. The MOGA selection of medium 
and higher lags is probably due to the thermal capacity 
of the glycerine tank. However, MOGA indicates that 
T(k) is dependent on the actual intensity value (Im(k)), 
and in the intensity 32 samples in the past (Im(k-32)). 
The presence of few lags of Im, and the presence of 
many lags of T can be related with the application of 
a constant intensity in the 60 minutes of heating, and 
the reduction of the intensity to zero between 60 and 
approximately 110 minutes, that is the dynamics of the 
system is completely dependent on the past values of 
the temperature.

From the analysis of Table 3 it is possible to realise 
that model 11 fulfils 2 out of 3 goals (test RMSE less 
than 0.003 and Rue  less than CI = 0.1) defined in MOGA. 

Inputs (Lags of Im  and T) 
Nº 

Im T

1 4, 21, 25 1, 3, 5, 14, 32, 39, 41

2 0, 2, 4, 21, 27, 41 1, 5, 6, 11, 15, 22, 23, 29, 39, 46, 47

3 32, 35, 36, 37, 40 1, 5, 6, 7, 14, 15, 17, 19, 20, 22, 31, 35, 39, 43, 45

4 19, 22, 32 1, 6, 7, 20, 21, 28, 31, 35

5 9, 32, 39, 43 1, 6, 12, 15, 20, 21, 22, 24, 35

6 6, 32 1, 6, 20, 25, 29, 30, 34, 40, 43, 44

7 0, 26 1, 3, 6, 9, 15, 20, 28, 31, 41

8 0, 8, 20, 35 1, 3, 4, 6, 8, 9, 20, 28, 35, 40, 41, 46

9 0, 10, 42 1, 4, 5, 6, 8, 9, 31, 40, 42, 47

10 19, 45 1, 8, 13, 22

11  1, 29, 34 1, 4, 6, 8, 13, 14, 18, 23, 29, 35, 38, 45, 46 

Table 2. Inputs of the preferable models

Table 3. Other preferable model characteristics and associated goals defined in the MOGA. (NA=Not Attributed).
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This model has also a reduced number of neurons and 
presents the smallest RMSE in the validation set, being 
in this way considered the best-performed model. The 
maximum absolute error for this model is 0.2 ºC. The 
temperature estimated by this model and estimated by 
the best ARX model are presented in Figure 2, as well 
as the measured temperature at 2 Watt/cm2.

In the preferable set there are also models (1, 2, 4, 
6, 7, and 9) that fulfil one or none of the goals defined, 
but those that are not fulfilled are close to the desired 
values, and these models are also considered good 
models. A common characteristic of these models 
is the smallest number of neurons, showing that 
the estimation of T(k) in a glycerine medium is well 
performed with a small model (reduced complexity). 
The remaining models (3, 5, 8, and 10) present higher 
values for the RMSE in the validation set, showing a 
bad generalization capacity. All of these models pres-
ent a high number of neurons, which can be explained 
by the MOGA attempt to fulfil the goals defined for 
Ree  and Rue. Models with a high number of neurons 
tend to model the noise of the inputs, decreasing Ree 
and Rue values. For example the model number 3 has 15 
neurons (maximum value defined), fulfilling the goals 
defined for Ree and Rue , but presents a high RMSE in 
the test and validation sets.

Comparing the RMSE in the validation set obtained 
with the two strategies and observing Figure 2, it can 
be stated that the modelling of the temperature dynam-
ics can only be attained with success using non-linear 
procedures, such as the RBFNN. The increase in perfor-
mance obtained, justifies the computational time spend 
in the selection of the best RBFNN structures.

Conclusion
This paper presents a preliminary study of the neural 
networks applicability in temperature estimation in a 
homogeneous medium, having in mind the determina-
tion of safe conditions for the application of ultrasound 
therapies, such as the hyperthermia. The results reveal 
that this kind of modelling can be accomplished with 
success (maximum absolute error less than 0.2 ºC) 
using RBFNN models (non-linear modelling). The 
best RBFNN attains an increase in performance of one 
magnitude order than the best ARX model obtained. 
Despite the real data used in this work was collected 
in a in-vitro environment, the results point that the 
RBFNN is able to bring improvements to temperature 
estimation in biological tissues and eventually in-vivo, 
in real time. 
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