Research on Biomedical Engineering
Research on Biomedical Engineering
Original article

Sepsis risk assessment: a retrospective analysis after a cognitive risk management robot (Robot LauraR) implementation in a clinical-surgical unit

Aline Junskowski Kalil, Viviane Maria de Carvalho Hessel Dias, Cristian da Costa Rocha, Hugo Manuel Paz Morales, Jacson Luiz Fressatto, Rubens Alexandre de Faria

Downloads: 0
Views: 294


Introduction: This study aimed at evaluating the impact of the implementation of a cognitive robot (Robot Laura™) on processes related to the identification and care of patients with risk of sepsis in a clinical-surgical unit of a private hospital in Curitiba-PR. Methods: The study data were obtained from the retrospective review of medical records of patients identified with infection and/or sepsis, in the period of six months before and after the implementation of such technology in the hospital. In addition, the Average Attendance Time (AAT) was obtained from the autonomous reading of the robot. Results: The average time/median until antibiotic prescription from the first identified sign of infection, with or without sepsis, was 390/77 and 109/58 minutes, respectively, in the six months before and after implementation of the technology. However, this difference was not statistically significant (p = 0.85). Regarding AAT, it was possible to observe a reduction from 305 to 280 minutes when comparing the periods of six months before and after the implementation of the technology (p = 0.02). Conclusion: Technologies such as this may be promising in helping healthcare professionals to identify risky situations for patients, as well as in assisting them to optimize the care required. However, further studies, with a greater number of subjects and with different scenarios, are necessary to consistently validate the results found.


Sepsis, Artificial intelligence, Laura Robot™, Machine learning.


Agência Nacional de Vigilância Sanitária – ANVISA. Critérios de Diagnósticos de Infecção Relacionada à Assistência de Saúde. 2ª ed. Brasília: ANVISA; 2017. 

Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992; 101(6):1644-55. http://dx.doi. org/10.1378/chest.101.6.1644. PMid:1303622. 

Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40(5):373-83. 8. PMid:3558716. 

Friedman CPA. “Fundamental theorem” of biomedical informatics. J Am Med Inform Assoc. 2009; 16(2):169-70. PMid:19074294. 

Gultepe E, Green JP, Nguyen H, Adams J, Albertson T, Tagkopoulos I. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J Am Med Inform Assoc. 2014; 21(2):315-25. PMid:23959843. 

Latin American Sepsis Institute – ILAS. Sepse: um problema de saúde pública. Brasília: CFM; 2015. 

Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006; 34(6):1589-96. PMid:16625125. 

Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference: International Sepsis Definitions Conference. Crit Care Med. 2003; 31(4):1250-6. CCM.0000050454.01978.3B. PMid:12682500. 

Machado FR, Assunção MSC, Cavalcanti AB, Japiassú AM, Azevedo LCP, Oliveira MC. Getting a consensus: advantages and disadvantages of Sepsis 3 in the context of middle-income settings. Rev Bras Ter Intensiva. 2016; 28(4):361-5. http:// PMid:28099632. 

Minne L, Abu-Hanna A, Jonge E. Evaluation of SOFA-based models for predicting mortality in the ICU: a systematic review. Crit Care. 2008; 12(6):R161. PMid:19091120. 

Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017; 45(3):486-552. http://dx.doi. org/10.1097/CCM.0000000000002255. PMid:28101605. 

Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-direct therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001; 345(19):1368-77. NEJMoa010307. PMid:11794169. 

Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC. Assessment of clinical criteria for sepsis for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016; 315(8):762-74. PMid:26903335. 

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J-L, Angus DC. The third consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016; 315(8):762-74. http:// PMid:26903335. 

Sogayar AM, Machado FR, Rea-Neto A, Dornas A, Grion CM, Lobo SM, Tura BR, Silva CL, Cal RG, Beer I, Michels V Jr, Safi J Jr, Kayath M, Silva E. A multicentre, prospective study to evaluate costs of septic patients in Brazilian intensive care units. Pharmacoeconomics. 2008; 26(5):425-34. http://dx.doi. org/10.2165/00019053-200826050-00006. PMid:18429658. 

Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. on behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996; 22(7):707-10. http:// PMid:8844239. 

Yoshihara JC, Okamoto TY, Cardoso LTQ, Carrilho CMDM, Kauss IAM, Carvalho LM, Kauss IAM, Carvalho LM, Queiroz LFT, Grion CMC, Bonametti AM. Análise descritiva dos pacientes com sepse grave ou choque séptico e fatores de risco para mortalidade. Semin Ciênc Biol Saúde. 2011; 32(2):127- 34.

5c3230630e88257e695f868a rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections