Research on Biomedical Engineering
Research on Biomedical Engineering
Original Article

The influence of subcutaneous fat in the skin temperature variation rate during exercise

Neves, Eduardo Borba; Moreira, Tiago Rafael; Lemos, Rui Jorge; Vilaça-Alves, José; Rosa, Claudio; Reis, Victor Machado

Downloads: 0
Views: 539


Introduction: Thermography records the skin temperature, which can be influenced by: muscle mass and subcutaneous fat layer. Thus, the aim of this study was to investigate the influence of subcutaneous fat layer in the skin temperature variation rate, during exercise. Methods: This is a short-longitudinal study that involved 17 healthy male trained volunteers. Volunteers were divided in two groups. The first called GP1 with nine volunteers (biceps brachii skinfold thickness < 4 mm) and the second called GP2 with eight volunteers (biceps brachii skinfold thickness from 4 to 8 mm). Both groups performed three sets with 16 repetitions of unilateral biceps brachii bi-set exercise with dominant arm (eight repetitions of biceps curls and another eight of biceps hammer curls, with dumbbells), and with load of 70% of 1RM. The rest time between sets was 90s. Results: The skin temperature variation rate (variation of temperature / time) was 3.59 × 10-3 ± 1.47 × 10-3 °C/s for GP1 and 0.66 × 10-3 ± 4.83 × 10-3 °C/s for GP2 (p = 0.138) considering all moments. For the period after set 1 until the end of set 3, skin temperature variation rate was 5.11 × 10-3 ± 2.57 × 10-3 °C/s for GP1 and 1.88 × 10-3 ± 3.60 × 10-3 °C/s for GP2 (p = 0.048). Subcutaneous fat layer also influences the skin temperature at resting (p = 0.044). Conclusion: Subjects with lower subcutaneous fat layer have a higher skin temperature variation rate during exercise than those with higher subcutaneous fat layer.


Thermography, Subcutaneous fat, Skin temperature, Exercise.


Bandeira F, Moura MAM, Souza MA, Nohama P, Neves EB. Pode a termografia auxiliar no diagnóstico de lesões musculares em atletas de futebol? Revista Brasileira de Medicina do Esporte. 2012; 18(4):246-51.

Bandeira F, Neves EB, Moura MAM, Nohama P. A termografia no apoio ao diagnóstico de lesão muscular no esporte. Revista Brasileira de Medicina do Esporte. 2014; 20(1):59-64.

Chudecka M, Lubkowska A, Kempińska-Podhorodecka A. Body surface temperature distribution in relation to body composition in obese women. Journal of Thermal Biology. 2014; 43:1-6. PMid:24956951.

Chudecka M, Lubkowska A. The use of thermal imaging to evaluate body temperature changes of athletes during training and a study on the impact of physiological and morphological factors on skin temperature. Human Movement. 2012; 13(1):33-9.

Fernandes AA, Amorim PRS, Brito CJ, Moura AG, Moreira DG, Costa CMA, Sillero-Quintana M, Marins JCB. Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography. Physiological Measurement. 2014; 35(2):189-203. PMid:24398429.

Formenti D, Ludwig N, Gargano M, Gondola M, Dellerma N, Caumo A, Alberti G. Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Annals of Biomedical Engineering. 2013; 41(4):863-71. PMid:23229282.

Foschini D, Prestes J. Respostas hormonais e imunes agudas decorrentes do treinamento de força em Bi-Set. Fitness & Performance Journal. 2007; 6(1):38-44.

Guyton A, Hall J. Tratado de fisiologia médica. 12th ed. Rio de Janeiro: Elsevier; 2011.

Kraemer W, Fry A. Strength testing: development and evaluation of methodology. In: Maud P, Foster C, editors. Physiological assessment of human fitness. Champaign: Human Kinetics; 1995. p. 115-38.

Krueger E, Scheeren EM, Nogueira-Neto GN, Neves EB, Button VLS, Nohama P. Influence of skinfold thickness in mechanomyography features. In: Proceedings of the World Congress on Medical Physics and Biomedical Engineering; 2012 May 26-31; Beijing, China. Heidelberg: Springer; 2013. p. 2030-3.

Merla A, Mattei PA, Di Donato L, Romani GL. Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Annals of Biomedical Engineering. 2010; 38(1):158-63. PMid:19798579.

Mitchell-Olds T, Shaw RG. Regression analysis of natural selection: statistical inference and biological interpretation. Evolution: International Journal of Organic Evolution. 1987; 41(6):1149-61.

Neves EB, Bandeira F, Ulbricht L, Vilaça-Alves J, Reis VM. Influence of muscle cross-sectional area in skin temperature. In: Proceedings of the 2nd International Conference on Bioimaging – BIOIMAGING 2015 and 8th International Joint Conference on Biomedical Engineering Systems and Technologies – BIOSTEC 2015; 2015 Jan 12-15; Lisboa, Portugal. Heidelberg: Springer; 2015a. p. 64-8.

Neves EB, Moreira TR, Lemos R, Vilaça-Alves J, Rosa C, Reis VM. Using skin temperature and muscle thickness to assess muscle response to strength training. Revista Brasileira de Medicina do Esporte. 2015b; 21(5):350-4.

Neves EB, Moreira TR, Lemos RJCA, Vilaça-Alves J, Reis VM. The thermal response of biceps brachii to strength training. Gazzetta Medica Italiana Archivio per le Scienze Mediche. 2015c; 174. In press.

Neves EB, Vilaça-Alves J, Antunes N, Felisberto IMV, Rosa C, Reis VM. Different responses of the skin temperature to physical exercise: systematic review. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2015 Aug 25-29; Milan, Italy. Piscataway: EMBS; 2015d. p. 1307-10.

Neves EB, Pino AV, Almeida RMVR, Souza MN. Knee bioelectric impedance assessment in healthy/with osteoarthritis subjects. Physiological Measurement. 2010; 31(2):207-19. PMid:20016115.

Neves EB, Reis VM. Fundamentos da termografia para o acompanhamento do treinamento desportivo. Revista Uniandrade. 2014; 15(2):79-86.

Neves EB, Ripka WL, Ulbricht L, Stadnik AMW. Comparison of the fat percentage obtained by bioimpedance, ultrasound and skinfolds in young adults. Revista Brasileira de Medicina do Esporte. 2013; 19(5):323-7.

Perin A, Ulbricht L, Ricieri DV, Neves EB. Use of biophotogrammetry for assessment of trunk flexibility. Revista Brasileira de Medicina do Esporte. 2012; 18(3):176-80.

Razali NM, Wah YB. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics. 2011; 2(1):21-33.

Ripka W, Ricieri D, Ulbricht L, Neves E, Stadnik A, Romaneli E. Biophotogrammetry model of respiratory motion analysis applied to children. In: Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2012 Aug 28-Sept 1; San Diego, USA. Piscataway: EMBS; 2012. p. 2404-7.

Ruxton GD. The unequal variance t-test is an underused alternative to student’s t-test and the mann-whitney u test. Behavioral Ecology. 2006; 17(4):688-90.

Sanches IJ, Gamba HR, Souza MA, Neves EB, Nohama P. Fusão 3D de imagens de MRI/CT e termografia. Revista Brasileira de Engenharia Biomédica. 2013; 29(3):298-308.

Savastano DM, Gorbach AM, Eden HS, Brady SM, Reynolds JC, Yanovski JA. Adiposity and human regional body temperature. The American Journal of Clinical Nutrition. 2009; 90(5):1124-31. PMid:19740972.

Vacari DA, Ulbricht L, Schneider FK, Neves EB. Principais métodos de diagnóstico postural da coluna lombar. Revista da Educação Física. 2013; 24(2):305-15.

Wang J. Pearson correlation coefficient. In: Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H, editors. Encyclopedia of systems biology. Heidelberg: Springer; 2013. p. 1671.
5889fbf85d01231a018b4892 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections