Research on Biomedical Engineering
Research on Biomedical Engineering
Original article

Quantitative MRI data in Multiple Sclerosis patients: A pattern recognition study

Rodrigo Antonio Pessini, Antonio Carlos dos Santos, Carlos Ernesto Garrido Salmon


Introduction: Multiple Sclerosis (MS) is a neurodegenerative disease characterized by inflammatory demyelination in the central nervous system. Quantitative Magnetic Resonance Imaging (qMRI) enables a detailed characterization of brain tissue, but generates a large number of numerical results. In this study, we elucidated the main qMRI techniques and the brain regions that allow the identification of MS patients from neuroimaging data and pattern recognition techniques.

Methods: The data came from the combination of computational tools of image processing and neuroimaging acquired in a 3 Tesla scanner using different techniques: Diffusion, T2 Relaxometry, Magnetization Transfer Ratio (MTR) and Structural Morphometry. Data from 126 brain regions of 203 healthy individuals and 124 MS patients were separated into two groups and processed in a data-mining program using the k-nearest‑neighbor (KNN) algorithm.

Results: The most relevant anatomical structures in the classification procedure were: corpus callosum, precuneus, left cerebellum and fusiform. Among the quantitative techniques the most relevant was the MTR, being indicated for longitudinal studies of this disease. KNN with 5 neighbors and pre-selected attributes had a better performance with an area under the ROC curve (97.3%) and accuracy (95.7%). A restricted classification considering only brain regions previously reported in the literature as affected by MS brought slightly lower scores, area: 97.1% and accuracy: 93.2%.

Conclusion: The use of standard recognition techniques from quantitative neuroimaging techniques has confirmed that the white matter of the brain is the most affected tissue by MS following a global pattern with greater involvement of the left hemisphere.


Pattern recognition, Multiple Sclerosis, Quantitative Magnetic Resonance Imaging


Carmo SS. Características do envolvimento do Sistema Nervoso Central na Polirradiculoneuropatia Inflamatória Desmielinizante Crônica: um estudo mediante técnicas quantitativas de Imagem por Ressonância Magnética [thesis]. Ribeirão Preto: Universidade de São Paulo; 2014.

Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M. Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2001; 70(3):311-7. PMid:11181851.

Destrieux C. Destrieux atlas changes [Internet]. Cambridge: Harvard University; 2010. [cited 2010 Feb 28]. Available from:

Diniz PRB, Velasco TR, Salmon CEG, Sakamoto AC, Leite JP, Santos AC. Extratemporal damage in temporal lobe epilepsy: magnetization transfer adds information to volumetric MR imaging. AJNR Am J Neuroradiol. 2011; 32(10):1857-61. PMid:21885719.

Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology. 2001; 56(3):304-11. PMid:11171893.

Filippi M, Preziosa P, Rocca MA, Microstructural MR. Microstructural MR imaging techniques in multiple sclerosis. Neuroimaging Clin N Am. 2017; 27(2):313-33. PMid:28391789.

Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N. Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage. 2011; 57(2):378-90. PMid:21497655.

Goldenberg MM. Multiple sclerosis review. Pharm Ther. 2012; 37(3):175-84. PMid:22605909.

Harrison DM, Shiee N, Bazin PL, Newsome SD, Ratchford JN, Pham D, Calabresi PA, Reich DS. Tract-specific quantitative MRI better correlates with disability than conventional MRI in multiple sclerosis. J Neurol. 2013; 260(2):397-406. PMid:22886062.

Kamber M, Shinghal R, Collins DL, Francis GS, Evans AC. Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE Trans Med Imaging. 1995; 14(3):442-53. PMid:18215848.

Kritas SK, Saggini A, Cerulli G, Caraffa A, Antinolfi P, Pantalone A, Rosati M, Tei M, Speziali A, Saggini R, Frydas A, Conti P. Impact of mast cells on multiple sclerosis: Inhibitory effect of natalizumab. Int J Immunopathol Pharmacol. 2014; 27(3):331-5. PMid:25280024.

Kucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM. Relaxivity and magnetization transfer of white matter lipids at MR imaging: Importance of cerebrosides and pH. Radiology. 1994; 192(2):521-9. PMid:8029426.

Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan RN, Davatzikos C. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol. 2008; 15(3):300-13. PMid:18280928.

Lassmann H. The pathology of multiple sclerosis and its evolution. Philos Trans R Soc Lond B Biol Sci. 1999; 354(1390):1635-40. PMid:10603616.

Li M, Qin Y, Gao F, Zhu W, He X. Discriminative analysis of multivariate features from structural MRI and diffusion tensor images. Magn Reson Imaging. 2014; 32(8):1043-51. PMid:24970026.

Narayana PA, Govindarajan KA, Goel P, Datta S, Lincoln JA, Cofield SS, Cutter GR, Lublin FD, Wolinsky JS. Regional cortical thickness in relapsing remitting multiple sclerosis: a multi-center study. Neuroimage Clin. 2012; 2:120-31. PMid:24179765.

Neema M, Goldberg-Zimring D, Guss ZD, Healy BC, Guttmann CR, Houtchens MK, Weiner HL, Horsfield MA, Hackney DB, Alsop DC, Bakshi R. 3T MRI relaxometry detects T2 prolongation in the cerebral normal-appearing white matter in multiple sclerosis. Neuroimage. 2009; 46(3):633-41. PMid:19281850.

Papathanasiou A, Messinis L, Zampakis P, Papathanasopoulos P. Corpus callosum atrophy as a marker of clinically meaningful cognitive decline in secondary progressive multiple sclerosis. Impact on employment status. J Clin Neurosci. 2017; 43:170-5. PMid:28601572.

Quddus A, Fieguth P, Basir O. Adaboost and Support Vector Machines for white matter lesion segmentation in MR images. In: IEEE-EMBS 2005: Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society; 2006 Jan 17-18; Shanghai, China. USA: IEEE; 2006. vol. 1, p. 463-6.

Reuter F, Del Cul A, Malikova I, Naccache L, Confort-Gouny S, Cohen L, Cherif AA, Cozzone PJ, Pelletier J, Ranjeva J-P, Dehaene S, Audoin B. White matter damage impairs access to consciousness in multiple sclerosis. Neuroimage. 2009; 44(2):590-9.

Sailer M, Fischl B, Salat D, Tempelmann C, Schönfeld MA, Busa E, Bodammer N, Heinze HJ, Dale A. Focal thinning of the cerebral cortex in multiple sclerosis. Brain. 2003; 126(Pt 8):1734-44. PMid:12805100.

Santos AC. Quantificação das mudanças no encéfalo causadas pela Esclerose Múltipla usando Ressonância Magnética Quantitativa [thesis]. Ribeirão Preto: Universidade de São Paulo; 2007.

Steenwijk MD, Geurts JJ, Daams M, Tijms BM, Wink AM, Balk LJ, Tewarie PK, Uitdehaag BM, Barkhof F, Vrenken H, Pouwels PJ. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain. 2016; 139(Pt 1):115-26. PMid:26637488.

Stevens A. FreeSurferWiki [Internet]. Cambridge: Harvard University; 2017. [cited 2017 Out 24]. Available from:

Vollmer T, Signorovitch J, Huynh L, Galebach P, Kelley C, DiBernardo A, Sasane R. The natural history of brain volume loss among patients with multiple sclerosis: a systematic literature review and meta-analysis. J Neurol Sci. 2015; 357(1-2):8-18. PMid:26238166.

Weygandt M, Hackmack K, Pfuller C, Bellmann-Strobl J, Paul F, Zipp F, Haynes JD. JD. MRI pattern recognition in multiple sclerosis normal-appearing brain areas. PLoS One. 2011; 6(6):e21138. PMid:21695053.

5b2b7cd70e88253523c6d92b rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections