Research on Biomedical Engineering
https://rbejournal.org/article/doi/10.1590/2446-4740.03415
Research on Biomedical Engineering
Review Article

Artificial motor control for electrically stimulated upper limbs of plegic or paretic people

Santos, Elgison da Luz dos; Gelain, Manuela Cristina; Krueger, Eddy; Nogueira-Neto, Guilherme Nunes ; Nohama, Percy

Downloads: 0
Views: 774

Abstract

Introduction: Functional Electrical Stimulation (FES) is a technique used in the restoration and generation of movements performed by subjects with neuromuscular disorders such as spinal cord injury (SCI). The purpose of this article is to outline the state of the art and perspectives of the use of FES in artificial motor control of the upper limbs in paretic or plegic people. Methods: The databases used in papers selection were Google Scholar and Capes’ Portals as well as proceedings of the Annual Conference of the International Functional Electrical Stimulation Society (IFESS). Results: Approximately 85% of the reviewed studies showed FES profile with pulse duration ranging from 1 to 300 μs and modulating (burst) frequency between 10 and 40 Hz. Regarding the type of electrodes, 88% of the studies employed transcutaneous electrodes. Conclusion: We concluded that FES with closed-loop feedback and feedforward are the most used and most viable systems for upper limbs motor control, because they perform self-corrections slowing neuromuscular adaptation, allowing different planes and more range of movement and sensory-motor integration. One of the difficulties found in neuroprosthesis systems are electrical wires attached to the user, becoming uninteresting in relation to aesthetics and break. The future perspectives lead to a trend to miniaturization of the stimulation equipment and the availability of wireless networks, which allow the attachment of modules to other components without physical contact, and will become more attractive for daily use.

Keywords

Functional electrical stimulation, Spinal cord injury, Upper limb, Rehabilitation.

References

Alon G, McBride K. Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Archives of Physical Medicine and Rehabilitation. 2003; 84(1):119-24. http://dx.doi.org/10.1053/apmr.2003.50073. PMid:12589632.

Berends HI, Boer JM, Renzenbrink GJ, Nijlant JMM, Jannink MJA, Prange GB. Clinical pilot study into the effect of multi-channel EMG-triggered electrical stimulation on arm function and dexterity after stroke. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Castro MCF, Cliquet A Jr. Neuromuscular electrical stimulation and electron-tactile stimulation in rehabilitation of artificial prehension and proprioception in tetraplegic patients. Acta Ortopedica Brasileira. 2001; 9(3):19-28.

Cologni AL, Seel T, Madaschi MG, Previdi F, Werner C, Schauer T. Automatic adjustment of electromyography-based FES control. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Cornwell AS, Liao JY, Bryden AM, Kirsch RF. Standard task set for evaluating rehabilitation interventions for individuals with arm paralysis. Journal of Rehabilitation Research and Development. 2012; 49(3):395-403. http://dx.doi.org/10.1682/JRRD.2011.03.0040. PMid:22773199.

De Marchis C, Monteiro T, Simon-Martinez C, Conforto S, Gharabaghi A. Multi-contact functional electrical stimulation for hand opening: electrophysiologically driven identification of the optimal stimulation site. Journal of Neuroengineering and Rehabilitation. 2016; 13(22):1. http://dx.doi.org/10.1186/s12984-016-0129-6. PMid:26955873.

Dosen S, Krajoski G, Đozić DJ, Farina D, Jorgovanović N. Closed-Loop control of dynamic Systems using electrotactile feedback. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Exell T, Freeman C, Meadmore K, Hughes A-M, Hallewell E, Burridge J. Stimulation of hand postures using an electrode array and iterative learning control. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Giszter SF. Spinal cord injury: Present and future therapeutic devices and prostheses. Neurotherapeutics; the Journal of the American Society for Experimental NeuroTherapeutics. 2008; 5(1):147-62. http://dx.doi.org/10.1016/j.nurt.2007.10.062. PMid:18164494.

Hallewell E, Exell T, Meadmore K, Freeman C, Kutlu M, Hughes A-M, Burridge J. Goal-orientated functional rehabilitation using electrical stimulation and iterative learning control for motor recovery in the upper extremity post-stroke. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Imatz E, Hoffmann U, Veneman J, Malešević N, Keller T. Stimulation discomfort comparison of asynchronous and synchronous methods with multi-field surface electrodes. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Joa K-L, Han Y-H, Mun C-W, Son B-K, Lee C-H, Shin Y-B, Ko H-Y, Shin Y-I. Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging. Journal of Neuroengineering and Rehabilitation. 2012; 9(1):48. http://dx.doi.org/10.1186/1743-0003-9-48. PMid:22828165.

Johnson LA, Fuglevand AJ. Evaluation of probabilistic methods to predict muscle activity: Implications for neuroprosthetics. Journal of Neural Engineering. 2009; 6(5):055008. http://dx.doi.org/10.1088/1741-2560/6/5/055008. PMid:19721180.

Kapadia N, Zivanovic V, Popovic MR. Restoring voluntary grasping function in individuals with incomplete chronic spinal cord injury: pilot study. Topics in Spinal Cord Injury Rehabilitation. 2013; 19(4):279-87. http://dx.doi.org/10.1310/sci1904-279. PMid:24244093.

Kitamura T, Sakaino S, Tsuji T. Bilateral control using functional electrical stimulation. In: Industrial Electronics Society IECON 2015-41st Annual Conference of the IEEE; 2015; Yokohama. EUA: IEE; 2015. p. 002336-41.

Koutsou AD, Rocon E, Brunetti F, Moreno JC, Pons JL. A novel method for the analysis of forearm muscle activation by selective sFES. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Krueger E, Scheeren EM, Nogueira-Neto GN, Neves EB, Button VLSN, Nohama P. Button VLdSN, Nohama P. Relationship between peak and mean amplitudes of the stimulating output voltage for functional control of the knee by spinal cord patients and healthy volunteers. Revista Brasileira de Engenharia Biomédica. 2013; 29(2):144-52. http://dx.doi.org/10.4322/rbeb.2013.013.

Krueger-Beck E, Scheeren EM, Nogueira-Neto GN, Button VLSN, Nohama P. Efeitos da estimulação elétrica funcional no controle neuromuscular artificial. Revista Neurociências. 2011; 19(3):530-41.

Martin Rohm MS, Rupp R, Kreilinger A, Müller-Putz G. Hybrid Brain-Computer Interfaces for control of neuroprosthetic systems for restoration of upper limb functions in high spinal cord injured individuals. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Matsushita N, Handa Y, Ichie M, Hoshimiya N. Electromyogram analysis and electrical stimulation control of paralysed wrist and hand. Journal of Electromyography and Kinesiology. 1995; 5(2):117-28. http://dx.doi.org/10.1016/1050-6411(95)00001-G. PMid:20719643.

Memberg WD, Polasek KH, Hart RL, Bryden AM, Kilgore KL, Nemunaitis GA, Hoyen HA, Keith MW, Kirsch RF. Implanted neuroprosthesis for restoring arm and hand function in people with high level tetraplegia. Archives of Physical Medicine and Rehabilitation. 2014; 95(6):1201e1-11e1. http://dx.doi.org/10.1016/j.apmr.2014.01.028. PMid:24561055.

Moss CW, Kilgore KL, Peckham PH. A novel command signal for motor neuroprosthetic control. Neurorehabilitation and Neural Repair. 2011; 25(9):847-54. http://dx.doi.org/10.1177/1545968311410067. PMid:21693772.

Mulcahey M, Betz RR, Smith BT, Weiss AA, Davis SE. Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation. Archives of Physical Medicine and Rehabilitation. 1997; 78(6):597-607. http://dx.doi.org/10.1016/S0003-9993(97)90425-1. PMid:9196467.

Nogueira GN No, Manffra EF, Nohama P, Button VLSN. Sistemas implantáveis de estimulação elétrica funcional para controle artificial de movimentos funcionais. Revista Brasileira de Engenharia Biomédica. 2010; 26(2):121-42. http://dx.doi.org/10.4322/rbeb.2012.085.

Peckham PH, Keith MW, Kilgore KL, Grill JH, Wuolle KS, Thrope GB, Gorman P, Hobby J, Mulcahey M, Carroll S, Hentz VR, Wiegner A. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Archives of Physical Medicine and Rehabilitation. 2001; 82(10):1380-8. http://dx.doi.org/10.1053/apmr.2001.25910. PMid:11588741.

Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annual Review of Biomedical Engineering. 2005; 7(1):327-60. http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140103. PMid:16004574.

Petrofsky JS. Electrical stimulation: neurophysiological basis and application. Basic and Applied Myology. 2004; 14(4):205-13.

Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R. ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letters. 2003; 351(1):33-6. http://dx.doi.org/10.1016/S0304-3940(03)00947-9. PMid:14550907.

Prochazka A, Gauthier M, Wieler M, Kenwell Z. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Archives of Physical Medicine and Rehabilitation. 1997; 78(6):608-14. http://dx.doi.org/10.1016/S0003-9993(97)90426-3. PMid:9196468.

Ragnarsson K. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord. 2008; 46(4):255-74. http://dx.doi.org/10.1038/sj.sc.3102091. PMid:17846639.

Rodrigues D, Herrera G. Recursos fisioterapêuticos na prevenção da perda da densidade mineral óssea com lesão medular. Acta Ortopedica Brasileira. 2004; 12(3):183-8. http://dx.doi.org/10.1590/S1413-78522004000300008.

Rodriguez MR, Clemente FAR. Avaliação das disfunções do controle motor. Universitas Ciências da Saúde. 2008; 2(2):259-67.

Rupp R, Rohm M, Schneiders M, Kreilinger A, Muller-Putz GR. Functional rehabilitation of the paralyzed upper extremity after spinal cord injury by noninvasive hybrid neuroprostheses. Proceedings of the IEEE. 2015; 103(6):954-68. http://dx.doi.org/10.1109/JPROC.2015.2395253.

Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. Journal of Neuroengineering and Rehabilitation. 2011; 8(60):60-72. http://dx.doi.org/10.1186/1743-0003-8-60. PMid:22032545.

Schearer EM, Liao Y-W, Perreault EJ, Tresch MC, Memberg WD, Kirsch RF, Lynch KM. System identification for 3D force control of a human arm neuroprosthesis using functional electrical stimulation. In: 2012 IEEE International Conference on Robotics and Automation (ICRA); 2012; Saint Paul, MN. EUA: IEEE; 2012. p. 3698-705.

Shibata N, Matsunaga T, Sasaki K, Kudo D, Okudera Y, Sato M, Chida S, Hatakeyama K, Watanabe M, Shimada Y. Improved function of the upper extremity in persons with cervical spine disorders by therapeutic electrical stimulation. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Snoek GJ, IJzerman MJ, in ’t Groen F A CG, Stoffers TS, Zilvold G. Use of the NESS handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients. Spinal Cord. 2000; 38(4):244-9. http://dx.doi.org/10.1038/sj.sc.3100980. PMid:10822395.

Štrbac MD, Malešević NM, Čobeljić R, Schwirtlich L. Feedback control of the forearm movement of tetraplegic patient based on Microsoft Kinect and multi-pad electrodes. In: 18th Annual Conference of the International Functional Electrical Stimulation Society (IFESS); 2013; Belgrade, Serbia. Enschede: University of Twente; 2013.

Thorsen R, Spadone R, Ferrarin M. A pilot study of myoelectrically controlled FES of upper extremity. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2001; 9(2):161-8. http://dx.doi.org/10.1109/7333.928576. PMid:11474969.

Thrasher T, Flett H, Popovic M. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord. 2006; 44(6):357-61. http://dx.doi.org/10.1038/sj.sc.3101864. PMid:16249784.

Westerveld AJ, Kuck A, Schouten AC, Veltink PH, Van der Kooij H. Passive reach and grasp with functional electrical stimulation and robotic arm support. Spain: Bridging Mind and Body; 2013.
5889fbfd5d01231a018b48a5 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections